語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Modeling count data[electronic resou...
~
Hilbe, Joseph M., (1944-)
Modeling count data[electronic resource] /
紀錄類型:
書目-電子資源 : Monograph/item
杜威分類號:
519.535
書名/作者:
Modeling count data/ Joseph M. Hilbe.
作者:
Hilbe, Joseph M.,
出版者:
Cambridge : : Cambridge University Press,, 2014.
面頁冊數:
xv, 283 p. : : ill., digital ;; 24 cm.
標題:
Multivariate analysis.
標題:
Statistics.
標題:
Linear models (Statistics)
ISBN:
9781139236065
ISBN:
9781107028333
ISBN:
9781107611252
內容註:
Machine generated contents note: Preface; 1. Varieties of count data; 2. Poisson regression; 3. Testing overdispersion; 4. Assessment of fit; 5. Negative binomial regression; 6. Poisson inverse Gaussian regression; 7. Problems with zeros; 8. Modeling under-dispersed count data - generalized Poisson; 9. Complex data: more advanced models; Appendix A: SAS code; References; Index.
摘要、提要註:
This entry-level text offers clear and concise guidelines on how to select, construct, interpret, and evaluate count data. Written for researchers with little or no background in advanced statistics, the book presents treatments of all major models using numerous tables, insets, and detailed modeling suggestions. It begins by demonstrating the fundamentals of modeling count data, including a thorough presentation of the Poisson model. It then works up to an analysis of the problem of overdispersion and of the negative binomial model, and finally to the many variations that can be made to the base count models. Examples in Stata, R, and SAS code enable readers to adapt models for their own purposes, making the text an ideal resource for researchers working in health, ecology, econometrics, transportation, and other fields.
電子資源:
https://doi.org/10.1017/CBO9781139236065
Modeling count data[electronic resource] /
Hilbe, Joseph M.,1944-
Modeling count data
[electronic resource] /Joseph M. Hilbe. - Cambridge :Cambridge University Press,2014. - xv, 283 p. :ill., digital ;24 cm.
Machine generated contents note: Preface; 1. Varieties of count data; 2. Poisson regression; 3. Testing overdispersion; 4. Assessment of fit; 5. Negative binomial regression; 6. Poisson inverse Gaussian regression; 7. Problems with zeros; 8. Modeling under-dispersed count data - generalized Poisson; 9. Complex data: more advanced models; Appendix A: SAS code; References; Index.
This entry-level text offers clear and concise guidelines on how to select, construct, interpret, and evaluate count data. Written for researchers with little or no background in advanced statistics, the book presents treatments of all major models using numerous tables, insets, and detailed modeling suggestions. It begins by demonstrating the fundamentals of modeling count data, including a thorough presentation of the Poisson model. It then works up to an analysis of the problem of overdispersion and of the negative binomial model, and finally to the many variations that can be made to the base count models. Examples in Stata, R, and SAS code enable readers to adapt models for their own purposes, making the text an ideal resource for researchers working in health, ecology, econometrics, transportation, and other fields.
ISBN: 9781139236065Subjects--Topical Terms:
182818
Multivariate analysis.
LC Class. No.: QA278 / .H56 2014
Dewey Class. No.: 519.535
Modeling count data[electronic resource] /
LDR
:01977nmm a2200265 a 4500
001
491726
003
UkCbUP
005
20181005153155.0
006
m d
007
cr nn 008maaau
008
210201s2014 enk s 0 eng d
020
$a
9781139236065
$q
(electronic bk.)
020
$a
9781107028333
$q
(hardback)
020
$a
9781107611252
$q
(paperback)
035
$a
CR9781139236065
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
4
$a
QA278
$b
.H56 2014
082
0 4
$a
519.535
$2
23
090
$a
QA278
$b
.H641 2014
100
1
$a
Hilbe, Joseph M.,
$d
1944-
$3
711336
245
1 0
$a
Modeling count data
$h
[electronic resource] /
$c
Joseph M. Hilbe.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2014.
300
$a
xv, 283 p. :
$b
ill., digital ;
$c
24 cm.
505
8
$a
Machine generated contents note: Preface; 1. Varieties of count data; 2. Poisson regression; 3. Testing overdispersion; 4. Assessment of fit; 5. Negative binomial regression; 6. Poisson inverse Gaussian regression; 7. Problems with zeros; 8. Modeling under-dispersed count data - generalized Poisson; 9. Complex data: more advanced models; Appendix A: SAS code; References; Index.
520
$a
This entry-level text offers clear and concise guidelines on how to select, construct, interpret, and evaluate count data. Written for researchers with little or no background in advanced statistics, the book presents treatments of all major models using numerous tables, insets, and detailed modeling suggestions. It begins by demonstrating the fundamentals of modeling count data, including a thorough presentation of the Poisson model. It then works up to an analysis of the problem of overdispersion and of the negative binomial model, and finally to the many variations that can be made to the base count models. Examples in Stata, R, and SAS code enable readers to adapt models for their own purposes, making the text an ideal resource for researchers working in health, ecology, econometrics, transportation, and other fields.
650
0
$a
Multivariate analysis.
$3
182818
650
0
$a
Statistics.
$3
145349
650
0
$a
Linear models (Statistics)
$3
224081
856
4 0
$u
https://doi.org/10.1017/CBO9781139236065
筆 0 讀者評論
多媒體
多媒體檔案
https://doi.org/10.1017/CBO9781139236065
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入