語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Random walks on reductive groups[ele...
~
Benoist, Yves.
Random walks on reductive groups[electronic resource] /
紀錄類型:
書目-電子資源 : Monograph/item
杜威分類號:
519.282
書名/作者:
Random walks on reductive groups/ by Yves Benoist, Jean-Francois Quint.
作者:
Benoist, Yves.
其他作者:
Quint, Jean-Francois.
出版者:
Cham : : Springer International Publishing :, 2016.
面頁冊數:
xi, 323 p. : : ill., digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Random walks (Mathematics)
標題:
Mathematics.
標題:
Probability Theory and Stochastic Processes.
標題:
Dynamical Systems and Ergodic Theory.
標題:
Topological Groups, Lie Groups.
ISBN:
9783319477213
ISBN:
9783319477190
內容註:
Introduction -- Part I The Law of Large Numbers -- Stationary measures -- The Law of Large Numbers -- Linear random walks -- Finite index subsemigroups -- Part II Reductive groups -- Loxodromic elements -- The Jordan projection of semigroups -- Reductive groups and their representations -- Zariski dense subsemigroups -- Random walks on reductive groups -- Part III The Central Limit Theorem -- Transfer operators over contracting actions -- Limit laws for cocycles -- Limit laws for products of random matrices -- Regularity of the stationary measure -- Part IV The Local Limit Theorem -- The Spectrum of the complex transfer operator -- The Local limit theorem for cocycles -- The local limit theorem for products of random matrices -- Part V Appendix -- Convergence of sequences of random variables -- The essential spectrum of bounded operators -- Bibliographical comments.
摘要、提要註:
The classical theory of Random Walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple - or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.
電子資源:
http://link.springer.com/openurl.asp?genre=book&isbn=978-3-319-47721-3
Random walks on reductive groups[electronic resource] /
Benoist, Yves.
Random walks on reductive groups
[electronic resource] /by Yves Benoist, Jean-Francois Quint. - Cham :Springer International Publishing :2016. - xi, 323 p. :ill., digital ;24 cm. - Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A series of modern surveys in mathematics,v.620071-1136 ;. - Ergebnisse der Mathematik und ihrer Grenzgebiete ;3. folge, v.61..
Introduction -- Part I The Law of Large Numbers -- Stationary measures -- The Law of Large Numbers -- Linear random walks -- Finite index subsemigroups -- Part II Reductive groups -- Loxodromic elements -- The Jordan projection of semigroups -- Reductive groups and their representations -- Zariski dense subsemigroups -- Random walks on reductive groups -- Part III The Central Limit Theorem -- Transfer operators over contracting actions -- Limit laws for cocycles -- Limit laws for products of random matrices -- Regularity of the stationary measure -- Part IV The Local Limit Theorem -- The Spectrum of the complex transfer operator -- The Local limit theorem for cocycles -- The local limit theorem for products of random matrices -- Part V Appendix -- Convergence of sequences of random variables -- The essential spectrum of bounded operators -- Bibliographical comments.
The classical theory of Random Walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple - or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.
ISBN: 9783319477213
Standard No.: 10.1007/978-3-319-47721-3doiSubjects--Topical Terms:
404365
Random walks (Mathematics)
LC Class. No.: QA274.73
Dewey Class. No.: 519.282
Random walks on reductive groups[electronic resource] /
LDR
:02795nmm a2200337 a 4500
001
467672
003
DE-He213
005
20161020182122.0
006
m d
007
cr nn 008maaau
008
170511s2016 gw s 0 eng d
020
$a
9783319477213
$q
(electronic bk.)
020
$a
9783319477190
$q
(paper)
024
7
$a
10.1007/978-3-319-47721-3
$2
doi
035
$a
978-3-319-47721-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274.73
072
7
$a
PBT
$2
bicssc
072
7
$a
PBWL
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
082
0 4
$a
519.282
$2
23
090
$a
QA274.73
$b
.B473 2016
100
1
$a
Benoist, Yves.
$3
673091
245
1 0
$a
Random walks on reductive groups
$h
[electronic resource] /
$c
by Yves Benoist, Jean-Francois Quint.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xi, 323 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A series of modern surveys in mathematics,
$x
0071-1136 ;
$v
v.62
505
0
$a
Introduction -- Part I The Law of Large Numbers -- Stationary measures -- The Law of Large Numbers -- Linear random walks -- Finite index subsemigroups -- Part II Reductive groups -- Loxodromic elements -- The Jordan projection of semigroups -- Reductive groups and their representations -- Zariski dense subsemigroups -- Random walks on reductive groups -- Part III The Central Limit Theorem -- Transfer operators over contracting actions -- Limit laws for cocycles -- Limit laws for products of random matrices -- Regularity of the stationary measure -- Part IV The Local Limit Theorem -- The Spectrum of the complex transfer operator -- The Local limit theorem for cocycles -- The local limit theorem for products of random matrices -- Part V Appendix -- Convergence of sequences of random variables -- The essential spectrum of bounded operators -- Bibliographical comments.
520
$a
The classical theory of Random Walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple - or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.
650
0
$a
Random walks (Mathematics)
$3
404365
650
1 4
$a
Mathematics.
$3
172349
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
463894
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
464934
650
2 4
$a
Topological Groups, Lie Groups.
$3
464896
700
1
$a
Quint, Jean-Francois.
$3
673092
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
Ergebnisse der Mathematik und ihrer Grenzgebiete ;
$v
3. folge, v.61.
$3
655723
856
4 0
$u
http://link.springer.com/openurl.asp?genre=book&isbn=978-3-319-47721-3
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
多媒體檔案
http://link.springer.com/openurl.asp?genre=book&isbn=978-3-319-47721-3
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入