語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The structure and stability of persi...
~
Chazal, Frederic.
The structure and stability of persistence modules[electronic resource] /
紀錄類型:
書目-電子資源 : Monograph/item
杜威分類號:
512.42
書名/作者:
The structure and stability of persistence modules/ by Frederic Chazal ... [et al.].
其他作者:
Chazal, Frederic.
出版者:
Cham : : Springer International Publishing :, 2016.
面頁冊數:
x, 120 p. : : ill., digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Modules (Algebra)
標題:
Mathematics.
標題:
Algebraic Topology.
標題:
Algebra.
標題:
Mathematical Applications in Computer Science.
ISBN:
9783319425450
ISBN:
9783319425436
內容註:
Introduction -- Persistence Modules -- Rectangle Measures -- Interleaving -- The Isometry Theorem -- Variations -- References -- Index.
摘要、提要註:
This book is a comprehensive treatment of the theory of persistence modules over the real line. It presents a set of mathematical tools to analyse the structure and to establish the stability of such modules, providing a sound mathematical framework for the study of persistence diagrams. Completely self-contained, this brief introduces the notion of persistence measure and makes extensive use of a new calculus of quiver representations to facilitate explicit computations. Appealing to both beginners and experts in the subject, The Structure and Stability of Persistence Modules provides a purely algebraic presentation of persistence, and thus complements the existing literature, which focuses mainly on topological and algorithmic aspects.
電子資源:
http://dx.doi.org/10.1007/978-3-319-42545-0
The structure and stability of persistence modules[electronic resource] /
The structure and stability of persistence modules
[electronic resource] /by Frederic Chazal ... [et al.]. - Cham :Springer International Publishing :2016. - x, 120 p. :ill., digital ;24 cm. - SpringerBriefs in mathematics,2191-8198. - SpringerBriefs in mathematics..
Introduction -- Persistence Modules -- Rectangle Measures -- Interleaving -- The Isometry Theorem -- Variations -- References -- Index.
This book is a comprehensive treatment of the theory of persistence modules over the real line. It presents a set of mathematical tools to analyse the structure and to establish the stability of such modules, providing a sound mathematical framework for the study of persistence diagrams. Completely self-contained, this brief introduces the notion of persistence measure and makes extensive use of a new calculus of quiver representations to facilitate explicit computations. Appealing to both beginners and experts in the subject, The Structure and Stability of Persistence Modules provides a purely algebraic presentation of persistence, and thus complements the existing literature, which focuses mainly on topological and algorithmic aspects.
ISBN: 9783319425450
Standard No.: 10.1007/978-3-319-42545-0doiSubjects--Topical Terms:
486780
Modules (Algebra)
LC Class. No.: QA247
Dewey Class. No.: 512.42
The structure and stability of persistence modules[electronic resource] /
LDR
:01880nmm a2200325 a 4500
001
467659
003
DE-He213
005
20161008174325.0
006
m d
007
cr nn 008maaau
008
170511s2016 gw s 0 eng d
020
$a
9783319425450
$q
(electronic bk.)
020
$a
9783319425436
$q
(paper)
024
7
$a
10.1007/978-3-319-42545-0
$2
doi
035
$a
978-3-319-42545-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA247
072
7
$a
PBPD
$2
bicssc
072
7
$a
MAT038000
$2
bisacsh
082
0 4
$a
512.42
$2
23
090
$a
QA247
$b
.S927 2016
245
0 4
$a
The structure and stability of persistence modules
$h
[electronic resource] /
$c
by Frederic Chazal ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
x, 120 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8198
505
0
$a
Introduction -- Persistence Modules -- Rectangle Measures -- Interleaving -- The Isometry Theorem -- Variations -- References -- Index.
520
$a
This book is a comprehensive treatment of the theory of persistence modules over the real line. It presents a set of mathematical tools to analyse the structure and to establish the stability of such modules, providing a sound mathematical framework for the study of persistence diagrams. Completely self-contained, this brief introduces the notion of persistence measure and makes extensive use of a new calculus of quiver representations to facilitate explicit computations. Appealing to both beginners and experts in the subject, The Structure and Stability of Persistence Modules provides a purely algebraic presentation of persistence, and thus complements the existing literature, which focuses mainly on topological and algorithmic aspects.
650
0
$a
Modules (Algebra)
$3
486780
650
1 4
$a
Mathematics.
$3
172349
650
2 4
$a
Algebraic Topology.
$3
464924
650
2 4
$a
Algebra.
$3
189734
650
2 4
$a
Mathematical Applications in Computer Science.
$3
467521
700
1
$a
Chazal, Frederic.
$3
673070
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematics.
$3
465744
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-42545-0
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-42545-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入