語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The Callias index formula revisited[...
~
Gesztesy, Fritz.
The Callias index formula revisited[electronic resource] /
紀錄類型:
書目-電子資源 : Monograph/item
杜威分類號:
514.74
書名/作者:
The Callias index formula revisited/ by Fritz Gesztesy, Marcus Waurick.
作者:
Gesztesy, Fritz.
其他作者:
Waurick, Marcus.
出版者:
Cham : : Springer International Publishing :, 2016.
面頁冊數:
ix, 192 p. : : ill., digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Index theorems.
標題:
Differential equations, Partial.
標題:
Mathematics.
標題:
Partial Differential Equations.
標題:
Operator Theory.
標題:
Functional Analysis.
ISBN:
9783319299778
ISBN:
9783319299761
摘要、提要註:
These lecture notes aim at providing a purely analytical and accessible proof of the Callias index formula. In various branches of mathematics (particularly, linear and nonlinear partial differential operators, singular integral operators, etc.) and theoretical physics (e.g., nonrelativistic and relativistic quantum mechanics, condensed matter physics, and quantum field theory), there is much interest in computing Fredholm indices of certain linear partial differential operators. In the late 1970's, Constantine Callias found a formula for the Fredholm index of a particular first-order differential operator (intimately connected to a supersymmetric Dirac-type operator) additively perturbed by a potential, shedding additional light on the Fedosov-Hormander Index Theorem. As a byproduct of our proof we also offer a glimpse at special non-Fredholm situations employing a generalized Witten index.
電子資源:
http://dx.doi.org/10.1007/978-3-319-29977-8
The Callias index formula revisited[electronic resource] /
Gesztesy, Fritz.
The Callias index formula revisited
[electronic resource] /by Fritz Gesztesy, Marcus Waurick. - Cham :Springer International Publishing :2016. - ix, 192 p. :ill., digital ;24 cm. - Lecture notes in mathematics,21570075-8434 ;. - Lecture notes in mathematics ;2035..
These lecture notes aim at providing a purely analytical and accessible proof of the Callias index formula. In various branches of mathematics (particularly, linear and nonlinear partial differential operators, singular integral operators, etc.) and theoretical physics (e.g., nonrelativistic and relativistic quantum mechanics, condensed matter physics, and quantum field theory), there is much interest in computing Fredholm indices of certain linear partial differential operators. In the late 1970's, Constantine Callias found a formula for the Fredholm index of a particular first-order differential operator (intimately connected to a supersymmetric Dirac-type operator) additively perturbed by a potential, shedding additional light on the Fedosov-Hormander Index Theorem. As a byproduct of our proof we also offer a glimpse at special non-Fredholm situations employing a generalized Witten index.
ISBN: 9783319299778
Standard No.: 10.1007/978-3-319-29977-8doiSubjects--Topical Terms:
660469
Index theorems.
LC Class. No.: QA614.92
Dewey Class. No.: 514.74
The Callias index formula revisited[electronic resource] /
LDR
:01886nmm a2200313 a 4500
001
458924
003
DE-He213
005
20161129112434.0
006
m d
007
cr nn 008maaau
008
170113s2016 gw s 0 eng d
020
$a
9783319299778
$q
(electronic bk.)
020
$a
9783319299761
$q
(paper)
024
7
$a
10.1007/978-3-319-29977-8
$2
doi
035
$a
978-3-319-29977-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA614.92
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
082
0 4
$a
514.74
$2
23
090
$a
QA614.92
$b
.G393 2016
100
1
$a
Gesztesy, Fritz.
$3
566617
245
1 4
$a
The Callias index formula revisited
$h
[electronic resource] /
$c
by Fritz Gesztesy, Marcus Waurick.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
ix, 192 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
0075-8434 ;
$v
2157
520
$a
These lecture notes aim at providing a purely analytical and accessible proof of the Callias index formula. In various branches of mathematics (particularly, linear and nonlinear partial differential operators, singular integral operators, etc.) and theoretical physics (e.g., nonrelativistic and relativistic quantum mechanics, condensed matter physics, and quantum field theory), there is much interest in computing Fredholm indices of certain linear partial differential operators. In the late 1970's, Constantine Callias found a formula for the Fredholm index of a particular first-order differential operator (intimately connected to a supersymmetric Dirac-type operator) additively perturbed by a potential, shedding additional light on the Fedosov-Hormander Index Theorem. As a byproduct of our proof we also offer a glimpse at special non-Fredholm situations employing a generalized Witten index.
650
0
$a
Index theorems.
$3
660469
650
0
$a
Differential equations, Partial.
$3
389324
650
1 4
$a
Mathematics.
$3
172349
650
2 4
$a
Partial Differential Equations.
$3
464931
650
2 4
$a
Operator Theory.
$3
464906
650
2 4
$a
Functional Analysis.
$3
464114
700
1
$a
Waurick, Marcus.
$3
660468
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in mathematics ;
$v
2035.
$3
464096
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-29977-8
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-29977-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入