語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Optimization of polynomials in non-c...
~
Burgdorf, Sabine.
Optimization of polynomials in non-commuting variables[electronic resource] /
紀錄類型:
書目-電子資源 : Monograph/item
杜威分類號:
519.6
書名/作者:
Optimization of polynomials in non-commuting variables/ by Sabine Burgdorf, Igor Klep, Janez Povh.
作者:
Burgdorf, Sabine.
其他作者:
Klep, Igor.
出版者:
Cham : : Springer International Publishing :, 2016.
面頁冊數:
xv, 104 p. : : ill., digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Mathematical optimization.
標題:
Polynomials.
標題:
Variables (Mathematics)
標題:
Mathematics.
標題:
Algebraic Geometry.
標題:
Quantum Computing.
標題:
Operations Research, Management Science.
標題:
Mathematical Software.
標題:
Systems Theory, Control.
ISBN:
9783319333380
ISBN:
9783319333366
摘要、提要註:
This book presents recent results on positivity and optimization of polynomials in non-commuting variables. Researchers in non-commutative algebraic geometry, control theory, system engineering, optimization, quantum physics and information science will find the unified notation and mixture of algebraic geometry and mathematical programming useful. Theoretical results are matched with algorithmic considerations; several examples and information on how to use NCSOStools open source package to obtain the results provided. Results are presented on detecting the eigenvalue and trace positivity of polynomials in non-commuting variables using Newton chip method and Newton cyclic chip method, relaxations for constrained and unconstrained optimization problems, semidefinite programming formulations of the relaxations and finite convergence of the hierarchies of these relaxations, and the practical efficiency of algorithms.
電子資源:
http://dx.doi.org/10.1007/978-3-319-33338-0
Optimization of polynomials in non-commuting variables[electronic resource] /
Burgdorf, Sabine.
Optimization of polynomials in non-commuting variables
[electronic resource] /by Sabine Burgdorf, Igor Klep, Janez Povh. - Cham :Springer International Publishing :2016. - xv, 104 p. :ill., digital ;24 cm. - SpringerBriefs in mathematics,2191-8198. - SpringerBriefs in mathematics..
This book presents recent results on positivity and optimization of polynomials in non-commuting variables. Researchers in non-commutative algebraic geometry, control theory, system engineering, optimization, quantum physics and information science will find the unified notation and mixture of algebraic geometry and mathematical programming useful. Theoretical results are matched with algorithmic considerations; several examples and information on how to use NCSOStools open source package to obtain the results provided. Results are presented on detecting the eigenvalue and trace positivity of polynomials in non-commuting variables using Newton chip method and Newton cyclic chip method, relaxations for constrained and unconstrained optimization problems, semidefinite programming formulations of the relaxations and finite convergence of the hierarchies of these relaxations, and the practical efficiency of algorithms.
ISBN: 9783319333380
Standard No.: 10.1007/978-3-319-33338-0doiSubjects--Topical Terms:
176332
Mathematical optimization.
LC Class. No.: QA402.5
Dewey Class. No.: 519.6
Optimization of polynomials in non-commuting variables[electronic resource] /
LDR
:01927nmm a2200313 a 4500
001
458905
003
DE-He213
005
20161130114833.0
006
m d
007
cr nn 008maaau
008
170113s2016 gw s 0 eng d
020
$a
9783319333380
$q
(electronic bk.)
020
$a
9783319333366
$q
(paper)
024
7
$a
10.1007/978-3-319-33338-0
$2
doi
035
$a
978-3-319-33338-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012010
$2
bisacsh
082
0 4
$a
519.6
$2
23
090
$a
QA402.5
$b
.B954 2016
100
1
$a
Burgdorf, Sabine.
$3
660438
245
1 0
$a
Optimization of polynomials in non-commuting variables
$h
[electronic resource] /
$c
by Sabine Burgdorf, Igor Klep, Janez Povh.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xv, 104 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8198
520
$a
This book presents recent results on positivity and optimization of polynomials in non-commuting variables. Researchers in non-commutative algebraic geometry, control theory, system engineering, optimization, quantum physics and information science will find the unified notation and mixture of algebraic geometry and mathematical programming useful. Theoretical results are matched with algorithmic considerations; several examples and information on how to use NCSOStools open source package to obtain the results provided. Results are presented on detecting the eigenvalue and trace positivity of polynomials in non-commuting variables using Newton chip method and Newton cyclic chip method, relaxations for constrained and unconstrained optimization problems, semidefinite programming formulations of the relaxations and finite convergence of the hierarchies of these relaxations, and the practical efficiency of algorithms.
650
0
$a
Mathematical optimization.
$3
176332
650
0
$a
Polynomials.
$3
210526
650
0
$a
Variables (Mathematics)
$3
519012
650
1 4
$a
Mathematics.
$3
172349
650
2 4
$a
Algebraic Geometry.
$3
464922
650
2 4
$a
Quantum Computing.
$3
590165
650
2 4
$a
Operations Research, Management Science.
$3
463666
650
2 4
$a
Mathematical Software.
$3
467029
650
2 4
$a
Systems Theory, Control.
$3
463973
700
1
$a
Klep, Igor.
$3
660439
700
1
$a
Povh, Janez.
$3
660440
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematics.
$3
465744
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-33338-0
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-33338-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入