BioInformation processing[electronic...
Peterson, James K.

 

  • BioInformation processing[electronic resource] :a primer on computational cognitive science /
  • 紀錄類型: 書目-語言資料,印刷品 : Monograph/item
    杜威分類號: 570.285
    書名/作者: BioInformation processing : a primer on computational cognitive science // by James K. Peterson.
    作者: Peterson, James K.
    出版者: Singapore : : Springer Singapore :, 2016.
    面頁冊數: xxxv, 570 p. : : ill., digital ;; 24 cm.
    Contained By: Springer eBooks
    標題: Bioinformatics.
    標題: Computational neuroscience.
    標題: Engineering.
    標題: Computational Intelligence.
    標題: Theoretical, Mathematical and Computational Physics.
    標題: Mathematical Models of Cognitive Processes and Neural Networks.
    標題: Artificial Intelligence (incl. Robotics)
    標題: Computer Imaging, Vision, Pattern Recognition and Graphics.
    ISBN: 9789812878717
    ISBN: 9789812878694
    內容註: BioInformation Processing -- The Diffusion Equation -- Integral Transforms -- The Time Dependent Cable Solution -- Mammalian Neural Structure -- Abstracting Principles of Computation -- Abstracting Principles of Computation -- Second Messenger Diffusion Pathways -- The Abstract Neuron Model -- Emotional Models -- Generation of Music Data: J. Peterson and L. Dzuris -- Generation of Painting Data: J. Peterson, L. Dzuris and Q. Peterson -- Modeling Compositional Design -- Networks Of Excitable Neurons -- Training The Model -- Matrix Feed Forward Networks -- Chained Feed Forward Architectures -- Graph Models -- Address Based Graphs -- Building Brain Models -- Models of Cognitive Dysfunction -- Conclusions -- Background Reading.
    摘要、提要註: This book shows how mathematics, computer science and science can be usefully and seamlessly intertwined. It begins with a general model of cognitive processes in a network of computational nodes, such as neurons, using a variety of tools from mathematics, computational science and neurobiology. It then moves on to solve the diffusion model from a low-level random walk point of view. It also demonstrates how this idea can be used in a new approach to solving the cable equation, in order to better understand the neural computation approximations. It introduces specialized data for emotional content, which allows a brain model to be built using MatLab tools, and also highlights a simple model of cognitive dysfunction.
    電子資源: http://dx.doi.org/10.1007/978-981-287-871-7
評論
Export
取書館別
 
 
變更密碼
登入