語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
BioInformation processing[electronic...
~
Peterson, James K.
BioInformation processing[electronic resource] :a primer on computational cognitive science /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
570.285
書名/作者:
BioInformation processing : a primer on computational cognitive science // by James K. Peterson.
作者:
Peterson, James K.
出版者:
Singapore : : Springer Singapore :, 2016.
面頁冊數:
xxxv, 570 p. : : ill., digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Bioinformatics.
標題:
Computational neuroscience.
標題:
Engineering.
標題:
Computational Intelligence.
標題:
Theoretical, Mathematical and Computational Physics.
標題:
Mathematical Models of Cognitive Processes and Neural Networks.
標題:
Artificial Intelligence (incl. Robotics)
標題:
Computer Imaging, Vision, Pattern Recognition and Graphics.
ISBN:
9789812878717
ISBN:
9789812878694
內容註:
BioInformation Processing -- The Diffusion Equation -- Integral Transforms -- The Time Dependent Cable Solution -- Mammalian Neural Structure -- Abstracting Principles of Computation -- Abstracting Principles of Computation -- Second Messenger Diffusion Pathways -- The Abstract Neuron Model -- Emotional Models -- Generation of Music Data: J. Peterson and L. Dzuris -- Generation of Painting Data: J. Peterson, L. Dzuris and Q. Peterson -- Modeling Compositional Design -- Networks Of Excitable Neurons -- Training The Model -- Matrix Feed Forward Networks -- Chained Feed Forward Architectures -- Graph Models -- Address Based Graphs -- Building Brain Models -- Models of Cognitive Dysfunction -- Conclusions -- Background Reading.
摘要、提要註:
This book shows how mathematics, computer science and science can be usefully and seamlessly intertwined. It begins with a general model of cognitive processes in a network of computational nodes, such as neurons, using a variety of tools from mathematics, computational science and neurobiology. It then moves on to solve the diffusion model from a low-level random walk point of view. It also demonstrates how this idea can be used in a new approach to solving the cable equation, in order to better understand the neural computation approximations. It introduces specialized data for emotional content, which allows a brain model to be built using MatLab tools, and also highlights a simple model of cognitive dysfunction.
電子資源:
http://dx.doi.org/10.1007/978-981-287-871-7
BioInformation processing[electronic resource] :a primer on computational cognitive science /
Peterson, James K.
BioInformation processing
a primer on computational cognitive science /[electronic resource] :by James K. Peterson. - Singapore :Springer Singapore :2016. - xxxv, 570 p. :ill., digital ;24 cm. - Cognitive science and technology,2195-3988. - Cognitive science and technology..
BioInformation Processing -- The Diffusion Equation -- Integral Transforms -- The Time Dependent Cable Solution -- Mammalian Neural Structure -- Abstracting Principles of Computation -- Abstracting Principles of Computation -- Second Messenger Diffusion Pathways -- The Abstract Neuron Model -- Emotional Models -- Generation of Music Data: J. Peterson and L. Dzuris -- Generation of Painting Data: J. Peterson, L. Dzuris and Q. Peterson -- Modeling Compositional Design -- Networks Of Excitable Neurons -- Training The Model -- Matrix Feed Forward Networks -- Chained Feed Forward Architectures -- Graph Models -- Address Based Graphs -- Building Brain Models -- Models of Cognitive Dysfunction -- Conclusions -- Background Reading.
This book shows how mathematics, computer science and science can be usefully and seamlessly intertwined. It begins with a general model of cognitive processes in a network of computational nodes, such as neurons, using a variety of tools from mathematics, computational science and neurobiology. It then moves on to solve the diffusion model from a low-level random walk point of view. It also demonstrates how this idea can be used in a new approach to solving the cable equation, in order to better understand the neural computation approximations. It introduces specialized data for emotional content, which allows a brain model to be built using MatLab tools, and also highlights a simple model of cognitive dysfunction.
ISBN: 9789812878717
Standard No.: 10.1007/978-981-287-871-7doiSubjects--Topical Terms:
184439
Bioinformatics.
LC Class. No.: QH324.2
Dewey Class. No.: 570.285
BioInformation processing[electronic resource] :a primer on computational cognitive science /
LDR
:02470nam a2200325 a 4500
001
456727
003
DE-He213
005
20160823165035.0
006
m d
007
cr nn 008maaau
008
161227s2016 si s 0 eng d
020
$a
9789812878717
$q
(electronic bk.)
020
$a
9789812878694
$q
(paper)
024
7
$a
10.1007/978-981-287-871-7
$2
doi
035
$a
978-981-287-871-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QH324.2
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
570.285
$2
23
090
$a
QH324.2
$b
.P485 2016
100
1
$a
Peterson, James K.
$3
656322
245
1 0
$a
BioInformation processing
$h
[electronic resource] :
$b
a primer on computational cognitive science /
$c
by James K. Peterson.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2016.
300
$a
xxxv, 570 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Cognitive science and technology,
$x
2195-3988
505
0
$a
BioInformation Processing -- The Diffusion Equation -- Integral Transforms -- The Time Dependent Cable Solution -- Mammalian Neural Structure -- Abstracting Principles of Computation -- Abstracting Principles of Computation -- Second Messenger Diffusion Pathways -- The Abstract Neuron Model -- Emotional Models -- Generation of Music Data: J. Peterson and L. Dzuris -- Generation of Painting Data: J. Peterson, L. Dzuris and Q. Peterson -- Modeling Compositional Design -- Networks Of Excitable Neurons -- Training The Model -- Matrix Feed Forward Networks -- Chained Feed Forward Architectures -- Graph Models -- Address Based Graphs -- Building Brain Models -- Models of Cognitive Dysfunction -- Conclusions -- Background Reading.
520
$a
This book shows how mathematics, computer science and science can be usefully and seamlessly intertwined. It begins with a general model of cognitive processes in a network of computational nodes, such as neurons, using a variety of tools from mathematics, computational science and neurobiology. It then moves on to solve the diffusion model from a low-level random walk point of view. It also demonstrates how this idea can be used in a new approach to solving the cable equation, in order to better understand the neural computation approximations. It introduces specialized data for emotional content, which allows a brain model to be built using MatLab tools, and also highlights a simple model of cognitive dysfunction.
650
0
$a
Bioinformatics.
$3
184439
650
0
$a
Computational neuroscience.
$3
395302
650
1 4
$a
Engineering.
$3
372756
650
2 4
$a
Computational Intelligence.
$3
463962
650
2 4
$a
Theoretical, Mathematical and Computational Physics.
$3
464132
650
2 4
$a
Mathematical Models of Cognitive Processes and Neural Networks.
$3
590938
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
463642
650
2 4
$a
Computer Imaging, Vision, Pattern Recognition and Graphics.
$3
465964
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
Cognitive science and technology.
$3
616149
856
4 0
$u
http://dx.doi.org/10.1007/978-981-287-871-7
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-981-287-871-7
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入