語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Big visual data analysis[electronic ...
~
Chen, Chen.
Big visual data analysis[electronic resource] :scene classification and geometric labeling /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
006.37
書名/作者:
Big visual data analysis : scene classification and geometric labeling // by Chen Chen, Yuzhuo Ren, C.-C. Jay Kuo.
作者:
Chen, Chen.
其他作者:
Ren, Yuzhuo.
出版者:
Singapore : : Springer Singapore :, 2016.
面頁冊數:
x, 122 p. : : ill., digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Computer vision.
標題:
Image processing - Digital techniques.
標題:
Engineering.
標題:
Signal, Image and Speech Processing.
標題:
Image Processing and Computer Vision.
標題:
Visualization.
ISBN:
9789811006319
ISBN:
9789811006296
內容註:
Introduction -- Scene Understanding Datasets -- Indoor/Outdoor classification with Multiple Experts -- Outdoor Scene Classification Using Labeled Segments -- Global-Attributes Assisted Outdoor Scene Geometric Labeling -- Conclusion and Future Work.
摘要、提要註:
This book offers an overview of traditional big visual data analysis approaches and provides state-of-the-art solutions for several scene comprehension problems, indoor/outdoor classification, outdoor scene classification, and outdoor scene layout estimation. It is illustrated with numerous natural and synthetic color images, and extensive statistical analysis is provided to help readers visualize big visual data distribution and the associated problems. Although there has been some research on big visual data analysis, little work has been published on big image data distribution analysis using the modern statistical approach described in this book. By presenting a complete methodology on big visual data analysis with three illustrative scene comprehension problems, it provides a generic framework that can be applied to other big visual data analysis tasks.
電子資源:
http://dx.doi.org/10.1007/978-981-10-0631-9
Big visual data analysis[electronic resource] :scene classification and geometric labeling /
Chen, Chen.
Big visual data analysis
scene classification and geometric labeling /[electronic resource] :by Chen Chen, Yuzhuo Ren, C.-C. Jay Kuo. - Singapore :Springer Singapore :2016. - x, 122 p. :ill., digital ;24 cm. - SpringerBriefs in electrical and computer engineering,2191-8112. - SpringerBriefs in electrical and computer engineering..
Introduction -- Scene Understanding Datasets -- Indoor/Outdoor classification with Multiple Experts -- Outdoor Scene Classification Using Labeled Segments -- Global-Attributes Assisted Outdoor Scene Geometric Labeling -- Conclusion and Future Work.
This book offers an overview of traditional big visual data analysis approaches and provides state-of-the-art solutions for several scene comprehension problems, indoor/outdoor classification, outdoor scene classification, and outdoor scene layout estimation. It is illustrated with numerous natural and synthetic color images, and extensive statistical analysis is provided to help readers visualize big visual data distribution and the associated problems. Although there has been some research on big visual data analysis, little work has been published on big image data distribution analysis using the modern statistical approach described in this book. By presenting a complete methodology on big visual data analysis with three illustrative scene comprehension problems, it provides a generic framework that can be applied to other big visual data analysis tasks.
ISBN: 9789811006319
Standard No.: 10.1007/978-981-10-0631-9doiSubjects--Topical Terms:
403529
Computer vision.
LC Class. No.: TA1634
Dewey Class. No.: 006.37
Big visual data analysis[electronic resource] :scene classification and geometric labeling /
LDR
:02226nam a2200349 a 4500
001
456725
003
DE-He213
005
20160823165831.0
006
m d
007
cr nn 008maaau
008
161227s2016 si s 0 eng d
020
$a
9789811006319
$q
(electronic bk.)
020
$a
9789811006296
$q
(paper)
024
7
$a
10.1007/978-981-10-0631-9
$2
doi
035
$a
978-981-10-0631-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA1634
072
7
$a
TTBM
$2
bicssc
072
7
$a
UYS
$2
bicssc
072
7
$a
TEC008000
$2
bisacsh
072
7
$a
COM073000
$2
bisacsh
082
0 4
$a
006.37
$2
23
090
$a
TA1634
$b
.C518 2016
100
1
$a
Chen, Chen.
$3
656318
245
1 0
$a
Big visual data analysis
$h
[electronic resource] :
$b
scene classification and geometric labeling /
$c
by Chen Chen, Yuzhuo Ren, C.-C. Jay Kuo.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2016.
300
$a
x, 122 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in electrical and computer engineering,
$x
2191-8112
505
0
$a
Introduction -- Scene Understanding Datasets -- Indoor/Outdoor classification with Multiple Experts -- Outdoor Scene Classification Using Labeled Segments -- Global-Attributes Assisted Outdoor Scene Geometric Labeling -- Conclusion and Future Work.
520
$a
This book offers an overview of traditional big visual data analysis approaches and provides state-of-the-art solutions for several scene comprehension problems, indoor/outdoor classification, outdoor scene classification, and outdoor scene layout estimation. It is illustrated with numerous natural and synthetic color images, and extensive statistical analysis is provided to help readers visualize big visual data distribution and the associated problems. Although there has been some research on big visual data analysis, little work has been published on big image data distribution analysis using the modern statistical approach described in this book. By presenting a complete methodology on big visual data analysis with three illustrative scene comprehension problems, it provides a generic framework that can be applied to other big visual data analysis tasks.
650
0
$a
Computer vision.
$3
403529
650
0
$a
Image processing
$x
Digital techniques.
$3
365611
650
1 4
$a
Engineering.
$3
372756
650
2 4
$a
Signal, Image and Speech Processing.
$3
463860
650
2 4
$a
Image Processing and Computer Vision.
$3
463967
650
2 4
$a
Visualization.
$3
382840
700
1
$a
Ren, Yuzhuo.
$3
656319
700
1
$a
Kuo, C.-C. Jay.
$3
610806
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in electrical and computer engineering.
$3
463907
856
4 0
$u
http://dx.doi.org/10.1007/978-981-10-0631-9
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-981-10-0631-9
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入