語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
New approaches to nonlinear waves[el...
~
SpringerLink (Online service)
New approaches to nonlinear waves[electronic resource] /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
530.124
書名/作者:
New approaches to nonlinear waves/ edited by Elena Tobisch.
其他作者:
Tobisch, Elena.
出版者:
Cham : : Springer International Publishing :, 2016.
面頁冊數:
xv, 298 p. : : ill. (some col.), digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Nonlinear waves.
標題:
Physics.
標題:
Theoretical, Mathematical and Computational Physics.
標題:
Classical Continuum Physics.
標題:
Statistical Physics, Dynamical Systems and Complexity.
標題:
Geophysics and Environmental Physics.
ISBN:
9783319206905
ISBN:
9783319206899
內容註:
Introduction (E. Tobisch) -- Brief historical overview -- Main notions -- Resonant interactions -- Modulation instability -- Frameworks -- Reality check -- References -- The effective equation method (Sergei Kuksin and Alberto Maiocchi) -- Introduction -- How to construct the effective equation -- Structure of resonances -- CHM: resonance clustering -- Concluding remarks -- References -- On the discovery of the steady-state resonant water waves (Shijun Liao, Dali Xu and Zeng Liu) -- Introduction -- Basic ideas of homotopy analysis method -- Steady-state resonant waves in constant-depth water -- Experimental observation -- Concluding remarks -- References -- Modulational instability in equations of KdV type (Jared C. Bronski, Vera Mikyoung Hur and Mathew A. Johnson) -- Introduction -- Periodic traveling waves of generalized KdV equations -- Formal asymptotics and Whitham’s modulation theory -- Rigorous theory of modulational instability -- Applications -- Concluding remarks -- References -- Modulational instability and rogue waves in shallow water models (R. Grimshaw, K. W. Chow and H. N. Chan) -- Introduction -- Korteweg-de Vries equations -- Boussinesq model -- Hirota-Satsuma model -- Discussion -- References -- Hamiltonian framework for short optical pulses (Shalva Amiranashvili) -- Introduction -- Poisson brackets -- Pulses in optical fibers -- Hamiltonian description of pulses -- Concluding remarks -- References -- Modeling water waves beyond perturbations (Didier Clamond and Denys Dutykh) -- Introduction -- Preliminaries -- Variational formulations -- Examples -- Discussion -- References -- Quantitative Analysis of Nonlinear Water-Waves: a Perspective of an Experimentalist (Lev Shemer) -- Introduction -- The experimental facilities -- The Nonlinear Schrodinger Equation -- The Modified Nonlinear Schrodinger (Dysthe) Equation -- The Spatial Zakharov Equation -- Statistics of nonlinear unidirectional water waves -- Discussion and Conclusions -- References.
摘要、提要註:
The book details a few of the novel methods developed in the last few years for studying various aspects of nonlinear wave systems. The introductory chapter provides a general overview, thematically linking the objects described in the book. Two chapters are devoted to wave systems possessing resonances with linear frequencies (Chapter 2) and with nonlinear frequencies (Chapter 3). In the next two chapters modulation instability in the KdV-type of equations is studied using rigorous mathematical methods (Chapter 4) and its possible connection to freak waves is investigated (Chapter 5). The book goes on to demonstrate how the choice of the Hamiltonian (Chapter 6) or the Lagrangian (Chapter 7) framework allows us to gain a deeper insight into the properties of a specific wave system. The final chapter discusses problems encountered when attempting to verify the theoretical predictions using numerical or laboratory experiments. All the chapters are illustrated by ample constructive examples demonstrating the applicability of these novel methods and approaches to a wide class of evolutionary dispersive PDEs, e.g. equations from Benjamin-Oro, Boussinesq, Hasegawa-Mima, KdV-type, Klein-Gordon, NLS-type, Serre, Shamel , Whitham and Zakharov. This makes the book interesting for professionals in the fields of nonlinear physics, applied mathematics and fluid mechanics as well as students who are studying these subjects. The book can also be used as a basis for a one-semester lecture course in applied mathematics or mathematical physics.
電子資源:
http://dx.doi.org/10.1007/978-3-319-20690-5
New approaches to nonlinear waves[electronic resource] /
New approaches to nonlinear waves
[electronic resource] /edited by Elena Tobisch. - Cham :Springer International Publishing :2016. - xv, 298 p. :ill. (some col.), digital ;24 cm. - Lecture notes in physics,v.9080075-8450 ;. - Lecture notes in physics ;v.830..
Introduction (E. Tobisch) -- Brief historical overview -- Main notions -- Resonant interactions -- Modulation instability -- Frameworks -- Reality check -- References -- The effective equation method (Sergei Kuksin and Alberto Maiocchi) -- Introduction -- How to construct the effective equation -- Structure of resonances -- CHM: resonance clustering -- Concluding remarks -- References -- On the discovery of the steady-state resonant water waves (Shijun Liao, Dali Xu and Zeng Liu) -- Introduction -- Basic ideas of homotopy analysis method -- Steady-state resonant waves in constant-depth water -- Experimental observation -- Concluding remarks -- References -- Modulational instability in equations of KdV type (Jared C. Bronski, Vera Mikyoung Hur and Mathew A. Johnson) -- Introduction -- Periodic traveling waves of generalized KdV equations -- Formal asymptotics and Whitham’s modulation theory -- Rigorous theory of modulational instability -- Applications -- Concluding remarks -- References -- Modulational instability and rogue waves in shallow water models (R. Grimshaw, K. W. Chow and H. N. Chan) -- Introduction -- Korteweg-de Vries equations -- Boussinesq model -- Hirota-Satsuma model -- Discussion -- References -- Hamiltonian framework for short optical pulses (Shalva Amiranashvili) -- Introduction -- Poisson brackets -- Pulses in optical fibers -- Hamiltonian description of pulses -- Concluding remarks -- References -- Modeling water waves beyond perturbations (Didier Clamond and Denys Dutykh) -- Introduction -- Preliminaries -- Variational formulations -- Examples -- Discussion -- References -- Quantitative Analysis of Nonlinear Water-Waves: a Perspective of an Experimentalist (Lev Shemer) -- Introduction -- The experimental facilities -- The Nonlinear Schrodinger Equation -- The Modified Nonlinear Schrodinger (Dysthe) Equation -- The Spatial Zakharov Equation -- Statistics of nonlinear unidirectional water waves -- Discussion and Conclusions -- References.
The book details a few of the novel methods developed in the last few years for studying various aspects of nonlinear wave systems. The introductory chapter provides a general overview, thematically linking the objects described in the book. Two chapters are devoted to wave systems possessing resonances with linear frequencies (Chapter 2) and with nonlinear frequencies (Chapter 3). In the next two chapters modulation instability in the KdV-type of equations is studied using rigorous mathematical methods (Chapter 4) and its possible connection to freak waves is investigated (Chapter 5). The book goes on to demonstrate how the choice of the Hamiltonian (Chapter 6) or the Lagrangian (Chapter 7) framework allows us to gain a deeper insight into the properties of a specific wave system. The final chapter discusses problems encountered when attempting to verify the theoretical predictions using numerical or laboratory experiments. All the chapters are illustrated by ample constructive examples demonstrating the applicability of these novel methods and approaches to a wide class of evolutionary dispersive PDEs, e.g. equations from Benjamin-Oro, Boussinesq, Hasegawa-Mima, KdV-type, Klein-Gordon, NLS-type, Serre, Shamel , Whitham and Zakharov. This makes the book interesting for professionals in the fields of nonlinear physics, applied mathematics and fluid mechanics as well as students who are studying these subjects. The book can also be used as a basis for a one-semester lecture course in applied mathematics or mathematical physics.
ISBN: 9783319206905
Standard No.: 10.1007/978-3-319-20690-5doiSubjects--Topical Terms:
444907
Nonlinear waves.
LC Class. No.: QA927
Dewey Class. No.: 530.124
New approaches to nonlinear waves[electronic resource] /
LDR
:04534nam a2200325 a 4500
001
454510
003
DE-He213
005
20160714142554.0
006
m d
007
cr nn 008maaau
008
161227s2016 gw s 0 eng d
020
$a
9783319206905
$q
(electronic bk.)
020
$a
9783319206899
$q
(paper)
024
7
$a
10.1007/978-3-319-20690-5
$2
doi
035
$a
978-3-319-20690-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA927
072
7
$a
PHU
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
082
0 4
$a
530.124
$2
23
090
$a
QA927
$b
.N532 2016
245
0 0
$a
New approaches to nonlinear waves
$h
[electronic resource] /
$c
edited by Elena Tobisch.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xv, 298 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in physics,
$x
0075-8450 ;
$v
v.908
505
0
$a
Introduction (E. Tobisch) -- Brief historical overview -- Main notions -- Resonant interactions -- Modulation instability -- Frameworks -- Reality check -- References -- The effective equation method (Sergei Kuksin and Alberto Maiocchi) -- Introduction -- How to construct the effective equation -- Structure of resonances -- CHM: resonance clustering -- Concluding remarks -- References -- On the discovery of the steady-state resonant water waves (Shijun Liao, Dali Xu and Zeng Liu) -- Introduction -- Basic ideas of homotopy analysis method -- Steady-state resonant waves in constant-depth water -- Experimental observation -- Concluding remarks -- References -- Modulational instability in equations of KdV type (Jared C. Bronski, Vera Mikyoung Hur and Mathew A. Johnson) -- Introduction -- Periodic traveling waves of generalized KdV equations -- Formal asymptotics and Whitham’s modulation theory -- Rigorous theory of modulational instability -- Applications -- Concluding remarks -- References -- Modulational instability and rogue waves in shallow water models (R. Grimshaw, K. W. Chow and H. N. Chan) -- Introduction -- Korteweg-de Vries equations -- Boussinesq model -- Hirota-Satsuma model -- Discussion -- References -- Hamiltonian framework for short optical pulses (Shalva Amiranashvili) -- Introduction -- Poisson brackets -- Pulses in optical fibers -- Hamiltonian description of pulses -- Concluding remarks -- References -- Modeling water waves beyond perturbations (Didier Clamond and Denys Dutykh) -- Introduction -- Preliminaries -- Variational formulations -- Examples -- Discussion -- References -- Quantitative Analysis of Nonlinear Water-Waves: a Perspective of an Experimentalist (Lev Shemer) -- Introduction -- The experimental facilities -- The Nonlinear Schrodinger Equation -- The Modified Nonlinear Schrodinger (Dysthe) Equation -- The Spatial Zakharov Equation -- Statistics of nonlinear unidirectional water waves -- Discussion and Conclusions -- References.
520
$a
The book details a few of the novel methods developed in the last few years for studying various aspects of nonlinear wave systems. The introductory chapter provides a general overview, thematically linking the objects described in the book. Two chapters are devoted to wave systems possessing resonances with linear frequencies (Chapter 2) and with nonlinear frequencies (Chapter 3). In the next two chapters modulation instability in the KdV-type of equations is studied using rigorous mathematical methods (Chapter 4) and its possible connection to freak waves is investigated (Chapter 5). The book goes on to demonstrate how the choice of the Hamiltonian (Chapter 6) or the Lagrangian (Chapter 7) framework allows us to gain a deeper insight into the properties of a specific wave system. The final chapter discusses problems encountered when attempting to verify the theoretical predictions using numerical or laboratory experiments. All the chapters are illustrated by ample constructive examples demonstrating the applicability of these novel methods and approaches to a wide class of evolutionary dispersive PDEs, e.g. equations from Benjamin-Oro, Boussinesq, Hasegawa-Mima, KdV-type, Klein-Gordon, NLS-type, Serre, Shamel , Whitham and Zakharov. This makes the book interesting for professionals in the fields of nonlinear physics, applied mathematics and fluid mechanics as well as students who are studying these subjects. The book can also be used as a basis for a one-semester lecture course in applied mathematics or mathematical physics.
650
0
$a
Nonlinear waves.
$3
444907
650
1 4
$a
Physics.
$3
171863
650
2 4
$a
Theoretical, Mathematical and Computational Physics.
$3
464132
650
2 4
$a
Classical Continuum Physics.
$3
463781
650
2 4
$a
Statistical Physics, Dynamical Systems and Complexity.
$3
463838
650
2 4
$a
Geophysics and Environmental Physics.
$3
463830
700
1
$a
Tobisch, Elena.
$3
652042
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in physics ;
$v
v.830.
$3
464212
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-20690-5
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-20690-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入