語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The SenticNet sentiment lexicon[elec...
~
Biagioni, Raoul.
The SenticNet sentiment lexicon[electronic resource] :exploring semantic richness in multi-word concepts /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
006.35
書名/作者:
The SenticNet sentiment lexicon : exploring semantic richness in multi-word concepts // by Raoul Biagioni.
作者:
Biagioni, Raoul.
出版者:
Cham : : Springer International Publishing :, 2016.
面頁冊數:
vi, 55 p. : : ill., digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Semantics - Data processing.
標題:
Computational linguistics.
標題:
Biomedicine.
標題:
Neurosciences.
標題:
Language Translation and Linguistics.
標題:
Semantics.
ISBN:
9783319389714
ISBN:
9783319389707
內容註:
Introduction -- Sentiment Analysis -- SenticNet -- Unsupervised Sentiment Classification -- Evaluation -- Conclusion -- Index.
摘要、提要註:
The research and its outcomes presented in this book, is about lexicon-based sentiment analysis. It uses single-, and multi-word concepts from the SenticNet sentiment lexicon as the source of sentiment information for the purpose of sentiment classification. In 6 chapters the book sheds light on the comparison of sentiment classification accuracy between single-word and multi-word concepts, for which a bespoke sentiment analysis system developed by the author was used. This book will be of interest to students, educators and researchers in the field of Sentic Computing.
電子資源:
http://dx.doi.org/10.1007/978-3-319-38971-4
The SenticNet sentiment lexicon[electronic resource] :exploring semantic richness in multi-word concepts /
Biagioni, Raoul.
The SenticNet sentiment lexicon
exploring semantic richness in multi-word concepts /[electronic resource] :by Raoul Biagioni. - Cham :Springer International Publishing :2016. - vi, 55 p. :ill., digital ;24 cm. - SpringerBriefs in cognitive computation,v.42212-6023 ;. - SpringerBriefs in cognitive computation ;5..
Introduction -- Sentiment Analysis -- SenticNet -- Unsupervised Sentiment Classification -- Evaluation -- Conclusion -- Index.
The research and its outcomes presented in this book, is about lexicon-based sentiment analysis. It uses single-, and multi-word concepts from the SenticNet sentiment lexicon as the source of sentiment information for the purpose of sentiment classification. In 6 chapters the book sheds light on the comparison of sentiment classification accuracy between single-word and multi-word concepts, for which a bespoke sentiment analysis system developed by the author was used. This book will be of interest to students, educators and researchers in the field of Sentic Computing.
ISBN: 9783319389714
Standard No.: 10.1007/978-3-319-38971-4doiSubjects--Topical Terms:
518016
Semantics
--Data processing.
LC Class. No.: P325.5.D38 / B53 2016
Dewey Class. No.: 006.35
The SenticNet sentiment lexicon[electronic resource] :exploring semantic richness in multi-word concepts /
LDR
:01759nam a2200325 a 4500
001
450351
003
DE-He213
005
20161019143037.0
006
m d
007
cr nn 008maaau
008
161210s2016 gw s 0 eng d
020
$a
9783319389714
$q
(electronic bk.)
020
$a
9783319389707
$q
(paper)
024
7
$a
10.1007/978-3-319-38971-4
$2
doi
035
$a
978-3-319-38971-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
P325.5.D38
$b
B53 2016
072
7
$a
PSAN
$2
bicssc
072
7
$a
MED057000
$2
bisacsh
082
0 4
$a
006.35
$2
23
090
$a
P325.5.D38
$b
B576 2016
100
1
$a
Biagioni, Raoul.
$3
646408
245
1 4
$a
The SenticNet sentiment lexicon
$h
[electronic resource] :
$b
exploring semantic richness in multi-word concepts /
$c
by Raoul Biagioni.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
vi, 55 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in cognitive computation,
$x
2212-6023 ;
$v
v.4
505
0
$a
Introduction -- Sentiment Analysis -- SenticNet -- Unsupervised Sentiment Classification -- Evaluation -- Conclusion -- Index.
520
$a
The research and its outcomes presented in this book, is about lexicon-based sentiment analysis. It uses single-, and multi-word concepts from the SenticNet sentiment lexicon as the source of sentiment information for the purpose of sentiment classification. In 6 chapters the book sheds light on the comparison of sentiment classification accuracy between single-word and multi-word concepts, for which a bespoke sentiment analysis system developed by the author was used. This book will be of interest to students, educators and researchers in the field of Sentic Computing.
650
0
$a
Semantics
$x
Data processing.
$3
518016
650
0
$a
Computational linguistics.
$3
181986
650
1 4
$a
Biomedicine.
$3
463454
650
2 4
$a
Neurosciences.
$3
372208
650
2 4
$a
Language Translation and Linguistics.
$3
463479
650
2 4
$a
Semantics.
$3
174559
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in cognitive computation ;
$v
5.
$3
633821
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-38971-4
950
$a
Biomedical and Life Sciences (Springer-11642)
筆 0 讀者評論
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-38971-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入