Rigid cohomology over Laurent series...
Lazda, Christopher.

 

  • Rigid cohomology over Laurent series fields[electronic resource] /
  • 紀錄類型: 書目-語言資料,印刷品 : Monograph/item
    杜威分類號: 514.23
    書名/作者: Rigid cohomology over Laurent series fields/ by Christopher Lazda, Ambrus Pal.
    作者: Lazda, Christopher.
    其他作者: Pal, Ambrus.
    出版者: Cham : : Springer International Publishing :, 2016.
    面頁冊數: x, 267 p. : : ill., digital ;; 24 cm.
    Contained By: Springer eBooks
    標題: Cohomology operations.
    標題: Laurent series.
    標題: Mathematics.
    標題: Algebraic Geometry.
    標題: Number Theory.
    ISBN: 9783319309514
    ISBN: 9783319309507
    內容註: Introduction -- First definitions and basic properties -- Finiteness with coefficients via a local monodromy theorem -- The overconvergent site, descent, and cohomology with compact support -- Absolute coefficients and arithmetic applications -- Rigid cohomology -- Adic spaces and rigid spaces -- Cohomological descent -- Index.
    摘要、提要註: In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed. The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields. Rigid Cohomology over Laurent Series Fields will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background material such as rigid cohomology and adic spaces make it as self-contained as possible, and an ideal starting point for graduate students looking to explore aspects of the classical theory of rigid cohomology and with an eye towards future research in the subject.
    電子資源: http://dx.doi.org/10.1007/978-3-319-30951-4
評論
Export
取書館別
 
 
變更密碼
登入