語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Rigid cohomology over Laurent series...
~
Lazda, Christopher.
Rigid cohomology over Laurent series fields[electronic resource] /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
514.23
書名/作者:
Rigid cohomology over Laurent series fields/ by Christopher Lazda, Ambrus Pal.
作者:
Lazda, Christopher.
其他作者:
Pal, Ambrus.
出版者:
Cham : : Springer International Publishing :, 2016.
面頁冊數:
x, 267 p. : : ill., digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Cohomology operations.
標題:
Laurent series.
標題:
Mathematics.
標題:
Algebraic Geometry.
標題:
Number Theory.
ISBN:
9783319309514
ISBN:
9783319309507
內容註:
Introduction -- First definitions and basic properties -- Finiteness with coefficients via a local monodromy theorem -- The overconvergent site, descent, and cohomology with compact support -- Absolute coefficients and arithmetic applications -- Rigid cohomology -- Adic spaces and rigid spaces -- Cohomological descent -- Index.
摘要、提要註:
In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed. The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields. Rigid Cohomology over Laurent Series Fields will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background material such as rigid cohomology and adic spaces make it as self-contained as possible, and an ideal starting point for graduate students looking to explore aspects of the classical theory of rigid cohomology and with an eye towards future research in the subject.
電子資源:
http://dx.doi.org/10.1007/978-3-319-30951-4
Rigid cohomology over Laurent series fields[electronic resource] /
Lazda, Christopher.
Rigid cohomology over Laurent series fields
[electronic resource] /by Christopher Lazda, Ambrus Pal. - Cham :Springer International Publishing :2016. - x, 267 p. :ill., digital ;24 cm. - Algebra and applications,v.211572-5553 ;. - Algebra and applications ;v.17..
Introduction -- First definitions and basic properties -- Finiteness with coefficients via a local monodromy theorem -- The overconvergent site, descent, and cohomology with compact support -- Absolute coefficients and arithmetic applications -- Rigid cohomology -- Adic spaces and rigid spaces -- Cohomological descent -- Index.
In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed. The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields. Rigid Cohomology over Laurent Series Fields will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background material such as rigid cohomology and adic spaces make it as self-contained as possible, and an ideal starting point for graduate students looking to explore aspects of the classical theory of rigid cohomology and with an eye towards future research in the subject.
ISBN: 9783319309514
Standard No.: 10.1007/978-3-319-30951-4doiSubjects--Topical Terms:
613511
Cohomology operations.
LC Class. No.: QA169
Dewey Class. No.: 514.23
Rigid cohomology over Laurent series fields[electronic resource] /
LDR
:02775nam a2200325 a 4500
001
447431
003
DE-He213
005
20161012172850.0
006
m d
007
cr nn 008maaau
008
161201s2016 gw s 0 eng d
020
$a
9783319309514
$q
(electronic bk.)
020
$a
9783319309507
$q
(paper)
024
7
$a
10.1007/978-3-319-30951-4
$2
doi
035
$a
978-3-319-30951-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA169
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012010
$2
bisacsh
082
0 4
$a
514.23
$2
23
090
$a
QA169
$b
.L431 2016
100
1
$a
Lazda, Christopher.
$3
641138
245
1 0
$a
Rigid cohomology over Laurent series fields
$h
[electronic resource] /
$c
by Christopher Lazda, Ambrus Pal.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
x, 267 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Algebra and applications,
$x
1572-5553 ;
$v
v.21
505
0
$a
Introduction -- First definitions and basic properties -- Finiteness with coefficients via a local monodromy theorem -- The overconvergent site, descent, and cohomology with compact support -- Absolute coefficients and arithmetic applications -- Rigid cohomology -- Adic spaces and rigid spaces -- Cohomological descent -- Index.
520
$a
In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed. The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields. Rigid Cohomology over Laurent Series Fields will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background material such as rigid cohomology and adic spaces make it as self-contained as possible, and an ideal starting point for graduate students looking to explore aspects of the classical theory of rigid cohomology and with an eye towards future research in the subject.
650
0
$a
Cohomology operations.
$3
613511
650
0
$a
Laurent series.
$3
641140
650
1 4
$a
Mathematics.
$3
172349
650
2 4
$a
Algebraic Geometry.
$3
464922
650
2 4
$a
Number Theory.
$3
464120
700
1
$a
Pal, Ambrus.
$3
641139
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
Algebra and applications ;
$v
v.17.
$3
465830
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-30951-4
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-30951-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入