語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Nonlocal diffusion and applications[...
~
Bucur, Claudia.
Nonlocal diffusion and applications[electronic resource] /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
515.53
書名/作者:
Nonlocal diffusion and applications/ by Claudia Bucur, Enrico Valdinoci.
作者:
Bucur, Claudia.
其他作者:
Valdinoci, Enrico.
出版者:
Cham : : Springer International Publishing :, 2016.
面頁冊數:
xii, 155 p. : : ill., digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Calculus of Variations and Optimal Control; Optimization.
標題:
Integral Transforms, Operational Calculus.
標題:
Functional Analysis.
標題:
Harmonic functions.
標題:
Laplace transformation.
標題:
Mathematics.
標題:
Partial Differential Equations.
ISBN:
9783319287393
ISBN:
9783319287386
內容註:
Introduction -- 1 A probabilistic motivation -- 1.1 The random walk with arbitrarily long jumps -- 1.2 A payoff model -- 2 An introduction to the fractional Laplacian -- 2.1 Preliminary notions -- 2.2 Fractional Sobolev Inequality and Generalized Coarea Formula -- 2.3 Maximum Principle and Harnack Inequality -- 2.4 An s-harmonic function -- 2.5 All functions are locally s-harmonic up to a small error -- 2.6 A function with constant fractional Laplacian on the ball -- 3 Extension problems -- 3.1 Water wave model -- 3.2 Crystal dislocation -- 3.3 An approach to the extension problem via the Fourier transform -- 4 Nonlocal phase transitions -- 4.1 The fractional Allen-Cahn equation -- 4.2 A nonlocal version of a conjecture by De Giorgi -- 5 Nonlocal minimal surfaces -- 5.1 Graphs and s-minimal surfaces -- 5.2 Non-existence of singular cones in dimension 2 5.3 Boundary regularity -- 6 A nonlocal nonlinear stationary Schrodinger type equation -- 6.1 From the nonlocal Uncertainty Principle to a fractional weighted inequality -- Alternative proofs of some results -- A.1 Another proof of Theorem A.2 Another proof of Lemma 2.3 -- References.
摘要、提要註:
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrodinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
電子資源:
http://dx.doi.org/10.1007/978-3-319-28739-3
Nonlocal diffusion and applications[electronic resource] /
Bucur, Claudia.
Nonlocal diffusion and applications
[electronic resource] /by Claudia Bucur, Enrico Valdinoci. - Cham :Springer International Publishing :2016. - xii, 155 p. :ill., digital ;24 cm. - Lecture notes of the Unione Matematica Italiana,201862-9113 ;. - Lecture notes of the Unione Matematica Italiana ;16..
Introduction -- 1 A probabilistic motivation -- 1.1 The random walk with arbitrarily long jumps -- 1.2 A payoff model -- 2 An introduction to the fractional Laplacian -- 2.1 Preliminary notions -- 2.2 Fractional Sobolev Inequality and Generalized Coarea Formula -- 2.3 Maximum Principle and Harnack Inequality -- 2.4 An s-harmonic function -- 2.5 All functions are locally s-harmonic up to a small error -- 2.6 A function with constant fractional Laplacian on the ball -- 3 Extension problems -- 3.1 Water wave model -- 3.2 Crystal dislocation -- 3.3 An approach to the extension problem via the Fourier transform -- 4 Nonlocal phase transitions -- 4.1 The fractional Allen-Cahn equation -- 4.2 A nonlocal version of a conjecture by De Giorgi -- 5 Nonlocal minimal surfaces -- 5.1 Graphs and s-minimal surfaces -- 5.2 Non-existence of singular cones in dimension 2 5.3 Boundary regularity -- 6 A nonlocal nonlinear stationary Schrodinger type equation -- 6.1 From the nonlocal Uncertainty Principle to a fractional weighted inequality -- Alternative proofs of some results -- A.1 Another proof of Theorem A.2 Another proof of Lemma 2.3 -- References.
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrodinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
ISBN: 9783319287393
Standard No.: 10.1007/978-3-319-28739-3doiSubjects--Topical Terms:
464715
Calculus of Variations and Optimal Control; Optimization.
LC Class. No.: QA405
Dewey Class. No.: 515.53
Nonlocal diffusion and applications[electronic resource] /
LDR
:02978nam a2200325 a 4500
001
447424
003
DE-He213
005
20161012170609.0
006
m d
007
cr nn 008maaau
008
161201s2016 gw s 0 eng d
020
$a
9783319287393
$q
(electronic bk.)
020
$a
9783319287386
$q
(paper)
024
7
$a
10.1007/978-3-319-28739-3
$2
doi
035
$a
978-3-319-28739-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA405
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
082
0 4
$a
515.53
$2
23
090
$a
QA405
$b
.B926 2016
100
1
$a
Bucur, Claudia.
$3
641123
245
1 0
$a
Nonlocal diffusion and applications
$h
[electronic resource] /
$c
by Claudia Bucur, Enrico Valdinoci.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xii, 155 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes of the Unione Matematica Italiana,
$x
1862-9113 ;
$v
20
505
0
$a
Introduction -- 1 A probabilistic motivation -- 1.1 The random walk with arbitrarily long jumps -- 1.2 A payoff model -- 2 An introduction to the fractional Laplacian -- 2.1 Preliminary notions -- 2.2 Fractional Sobolev Inequality and Generalized Coarea Formula -- 2.3 Maximum Principle and Harnack Inequality -- 2.4 An s-harmonic function -- 2.5 All functions are locally s-harmonic up to a small error -- 2.6 A function with constant fractional Laplacian on the ball -- 3 Extension problems -- 3.1 Water wave model -- 3.2 Crystal dislocation -- 3.3 An approach to the extension problem via the Fourier transform -- 4 Nonlocal phase transitions -- 4.1 The fractional Allen-Cahn equation -- 4.2 A nonlocal version of a conjecture by De Giorgi -- 5 Nonlocal minimal surfaces -- 5.1 Graphs and s-minimal surfaces -- 5.2 Non-existence of singular cones in dimension 2 5.3 Boundary regularity -- 6 A nonlocal nonlinear stationary Schrodinger type equation -- 6.1 From the nonlocal Uncertainty Principle to a fractional weighted inequality -- Alternative proofs of some results -- A.1 Another proof of Theorem A.2 Another proof of Lemma 2.3 -- References.
520
$a
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrodinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
650
2 4
$a
Calculus of Variations and Optimal Control; Optimization.
$3
464715
650
2 4
$a
Integral Transforms, Operational Calculus.
$3
602459
650
2 4
$a
Functional Analysis.
$3
464114
650
0
$a
Harmonic functions.
$3
636378
650
0
$a
Laplace transformation.
$3
572210
650
1 4
$a
Mathematics.
$3
172349
650
2 4
$a
Partial Differential Equations.
$3
464931
700
1
$a
Valdinoci, Enrico.
$3
641124
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
Lecture notes of the Unione Matematica Italiana ;
$v
16.
$3
605607
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-28739-3
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-28739-3
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入