語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Branching random walks[electronic re...
~
Shi, Zhan.
Branching random walks[electronic resource] :Ecole d'Ete de Probabilites de Saint-Flour XLII - 2012 /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
519.282
書名/作者:
Branching random walks : Ecole d'Ete de Probabilites de Saint-Flour XLII - 2012 // by Zhan Shi.
作者:
Shi, Zhan.
出版者:
Cham : : Springer International Publishing :, 2015.
面頁冊數:
x, 133 p. : : ill. (some col.), digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Random walks (Mathematics)
標題:
Branching processes - Congresses.
標題:
Mathematics.
標題:
Probability Theory and Stochastic Processes.
ISBN:
9783319253725
ISBN:
9783319253718
內容註:
I Introduction -- II Galton–Watson trees -- III Branching random walks and martingales -- IV The spinal decomposition theorem -- V Applications of the spinal decomposition theorem -- VI Branching random walks with selection -- VII Biased random walks on Galton–Watson trees -- A Sums of i.i.d. random variables -- References.
摘要、提要註:
Providing an elementary introduction to branching random walks, the main focus of these lecture notes is on the asymptotic properties of one-dimensional discrete-time supercritical branching random walks, and in particular, on extreme positions in each generation, as well as the evolution of these positions over time. Starting with the simple case of Galton-Watson trees, the text primarily concentrates on exploiting, in various contexts, the spinal structure of branching random walks. The notes end with some applications to biased random walks on trees.
電子資源:
http://dx.doi.org/10.1007/978-3-319-25372-5
Branching random walks[electronic resource] :Ecole d'Ete de Probabilites de Saint-Flour XLII - 2012 /
Shi, Zhan.
Branching random walks
Ecole d'Ete de Probabilites de Saint-Flour XLII - 2012 /[electronic resource] :by Zhan Shi. - Cham :Springer International Publishing :2015. - x, 133 p. :ill. (some col.), digital ;24 cm. - Lecture notes in mathematics,21510075-8434 ;. - Lecture notes in mathematics ;2035..
I Introduction -- II Galton–Watson trees -- III Branching random walks and martingales -- IV The spinal decomposition theorem -- V Applications of the spinal decomposition theorem -- VI Branching random walks with selection -- VII Biased random walks on Galton–Watson trees -- A Sums of i.i.d. random variables -- References.
Providing an elementary introduction to branching random walks, the main focus of these lecture notes is on the asymptotic properties of one-dimensional discrete-time supercritical branching random walks, and in particular, on extreme positions in each generation, as well as the evolution of these positions over time. Starting with the simple case of Galton-Watson trees, the text primarily concentrates on exploiting, in various contexts, the spinal structure of branching random walks. The notes end with some applications to biased random walks on trees.
ISBN: 9783319253725
Standard No.: 10.1007/978-3-319-25372-5doiSubjects--Topical Terms:
404365
Random walks (Mathematics)
LC Class. No.: QA274.73
Dewey Class. No.: 519.282
Branching random walks[electronic resource] :Ecole d'Ete de Probabilites de Saint-Flour XLII - 2012 /
LDR
:01950nam a2200337 a 4500
001
444823
003
DE-He213
005
20160527140325.0
006
m d
007
cr nn 008maaau
008
160715s2015 gw s 0 eng d
020
$a
9783319253725
$q
(electronic bk.)
020
$a
9783319253718
$q
(paper)
024
7
$a
10.1007/978-3-319-25372-5
$2
doi
035
$a
978-3-319-25372-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274.73
072
7
$a
PBT
$2
bicssc
072
7
$a
PBWL
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
082
0 4
$a
519.282
$2
23
090
$a
QA274.73
$b
.S555 2015
100
1
$a
Shi, Zhan.
$3
636618
245
1 0
$a
Branching random walks
$h
[electronic resource] :
$b
Ecole d'Ete de Probabilites de Saint-Flour XLII - 2012 /
$c
by Zhan Shi.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
x, 133 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
0075-8434 ;
$v
2151
505
0
$a
I Introduction -- II Galton–Watson trees -- III Branching random walks and martingales -- IV The spinal decomposition theorem -- V Applications of the spinal decomposition theorem -- VI Branching random walks with selection -- VII Biased random walks on Galton–Watson trees -- A Sums of i.i.d. random variables -- References.
520
$a
Providing an elementary introduction to branching random walks, the main focus of these lecture notes is on the asymptotic properties of one-dimensional discrete-time supercritical branching random walks, and in particular, on extreme positions in each generation, as well as the evolution of these positions over time. Starting with the simple case of Galton-Watson trees, the text primarily concentrates on exploiting, in various contexts, the spinal structure of branching random walks. The notes end with some applications to biased random walks on trees.
650
0
$a
Random walks (Mathematics)
$3
404365
650
0
$a
Branching processes
$v
Congresses.
$3
636619
650
1 4
$a
Mathematics.
$3
172349
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
463894
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in mathematics ;
$v
2035.
$3
464096
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-25372-5
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-25372-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入