語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Hierarchical matrices[electronic res...
~
Hackbusch, Wolfgang.
Hierarchical matrices[electronic resource] :algorithms and analysis /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
512.9434
書名/作者:
Hierarchical matrices : algorithms and analysis // by Wolfgang Hackbusch.
作者:
Hackbusch, Wolfgang.
出版者:
Berlin, Heidelberg : : Springer Berlin Heidelberg :, 2015.
面頁冊數:
xxv, 511 p. : : ill., digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Matrices.
標題:
Mathematics.
標題:
Numerical Analysis.
標題:
Algorithms.
標題:
Partial Differential Equations.
標題:
Integral Equations.
標題:
Linear and Multilinear Algebras, Matrix Theory.
ISBN:
9783662473245
ISBN:
9783662473238
內容註:
Preface -- Part I: Introductory and Preparatory Topics -- 1. Introduction -- 2. Rank-r Matrices -- 3. Introductory Example -- 4. Separable Expansions and Low-Rank Matrices -- 5. Matrix Partition -- Part II: H-Matrices and Their Arithmetic -- 6. Definition and Properties of Hierarchical Matrices -- 7. Formatted Matrix Operations for Hierarchical Matrices -- 8. H2-Matrices -- 9. Miscellaneous Supplements -- Part III: Applications -- 10. Applications to Discretised Integral Operators -- 11. Applications to Finite Element Matrices -- 12. Inversion with Partial Evaluation -- 13. Eigenvalue Problems -- 14. Matrix Functions -- 15. Matrix Equations -- 16. Tensor Spaces -- Part IV: Appendices -- A. Graphs and Trees -- B. Polynomials -- C. Linear Algebra and Functional Analysis -- D. Sinc Functions and Exponential Sums -- E. Asymptotically Smooth Functions -- References -- Index.
摘要、提要註:
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.
電子資源:
http://dx.doi.org/10.1007/978-3-662-47324-5
Hierarchical matrices[electronic resource] :algorithms and analysis /
Hackbusch, Wolfgang.
Hierarchical matrices
algorithms and analysis /[electronic resource] :by Wolfgang Hackbusch. - Berlin, Heidelberg :Springer Berlin Heidelberg :2015. - xxv, 511 p. :ill., digital ;24 cm. - Springer series in computational mathematics,v.490179-3632 ;. - Springer series in computational mathematics ;42..
Preface -- Part I: Introductory and Preparatory Topics -- 1. Introduction -- 2. Rank-r Matrices -- 3. Introductory Example -- 4. Separable Expansions and Low-Rank Matrices -- 5. Matrix Partition -- Part II: H-Matrices and Their Arithmetic -- 6. Definition and Properties of Hierarchical Matrices -- 7. Formatted Matrix Operations for Hierarchical Matrices -- 8. H2-Matrices -- 9. Miscellaneous Supplements -- Part III: Applications -- 10. Applications to Discretised Integral Operators -- 11. Applications to Finite Element Matrices -- 12. Inversion with Partial Evaluation -- 13. Eigenvalue Problems -- 14. Matrix Functions -- 15. Matrix Equations -- 16. Tensor Spaces -- Part IV: Appendices -- A. Graphs and Trees -- B. Polynomials -- C. Linear Algebra and Functional Analysis -- D. Sinc Functions and Exponential Sums -- E. Asymptotically Smooth Functions -- References -- Index.
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.
ISBN: 9783662473245
Standard No.: 10.1007/978-3-662-47324-5doiSubjects--Topical Terms:
435467
Matrices.
LC Class. No.: QA188
Dewey Class. No.: 512.9434
Hierarchical matrices[electronic resource] :algorithms and analysis /
LDR
:03035nam a2200337 a 4500
001
444677
003
DE-He213
005
20160513091634.0
006
m d
007
cr nn 008maaau
008
160715s2015 gw s 0 eng d
020
$a
9783662473245
$q
(electronic bk.)
020
$a
9783662473238
$q
(paper)
024
7
$a
10.1007/978-3-662-47324-5
$2
doi
035
$a
978-3-662-47324-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA188
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT021000
$2
bisacsh
072
7
$a
MAT006000
$2
bisacsh
082
0 4
$a
512.9434
$2
23
090
$a
QA188
$b
.H118 2015
100
1
$a
Hackbusch, Wolfgang.
$3
468487
245
1 0
$a
Hierarchical matrices
$h
[electronic resource] :
$b
algorithms and analysis /
$c
by Wolfgang Hackbusch.
260
$a
Berlin, Heidelberg :
$b
Springer Berlin Heidelberg :
$b
Imprint: Springer,
$c
2015.
300
$a
xxv, 511 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer series in computational mathematics,
$x
0179-3632 ;
$v
v.49
505
0
$a
Preface -- Part I: Introductory and Preparatory Topics -- 1. Introduction -- 2. Rank-r Matrices -- 3. Introductory Example -- 4. Separable Expansions and Low-Rank Matrices -- 5. Matrix Partition -- Part II: H-Matrices and Their Arithmetic -- 6. Definition and Properties of Hierarchical Matrices -- 7. Formatted Matrix Operations for Hierarchical Matrices -- 8. H2-Matrices -- 9. Miscellaneous Supplements -- Part III: Applications -- 10. Applications to Discretised Integral Operators -- 11. Applications to Finite Element Matrices -- 12. Inversion with Partial Evaluation -- 13. Eigenvalue Problems -- 14. Matrix Functions -- 15. Matrix Equations -- 16. Tensor Spaces -- Part IV: Appendices -- A. Graphs and Trees -- B. Polynomials -- C. Linear Algebra and Functional Analysis -- D. Sinc Functions and Exponential Sums -- E. Asymptotically Smooth Functions -- References -- Index.
520
$a
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.
650
0
$a
Matrices.
$3
435467
650
1 4
$a
Mathematics.
$3
172349
650
2 4
$a
Numerical Analysis.
$3
465756
650
2 4
$a
Algorithms.
$3
182797
650
2 4
$a
Partial Differential Equations.
$3
464931
650
2 4
$a
Integral Equations.
$3
468445
650
2 4
$a
Linear and Multilinear Algebras, Matrix Theory.
$3
464949
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
Springer series in computational mathematics ;
$v
42.
$3
468488
856
4 0
$u
http://dx.doi.org/10.1007/978-3-662-47324-5
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-662-47324-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入