語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
p-Laplace equation in the Heisenberg...
~
Ricciotti, Diego.
p-Laplace equation in the Heisenberg group[electronic resource] :regularity of solutions /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
515.53
書名/作者:
p-Laplace equation in the Heisenberg group : regularity of solutions // by Diego Ricciotti.
作者:
Ricciotti, Diego.
出版者:
Cham : : Springer International Publishing :, 2015.
面頁冊數:
xiv, 87 p. : : ill., digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Harmonic functions.
標題:
Mathematics.
標題:
Ordinary Differential Equations.
標題:
Laplacian operator.
ISBN:
9783319237909
ISBN:
9783319237893
內容註:
1 Introduction -- 2 The Heisenberg Group -- 3 The p-Laplace Equation -- 4 C1 regularity for the non-degenerate equation -- 5 Lipschitz Regularity.
摘要、提要註:
This works focuses on regularity theory for solutions to the p-Laplace equation in the Heisenberg group. In particular, it presents detailed proofs of smoothness for solutions to the non-degenerate equation and of Lipschitz regularity for solutions to the degenerate one. An introductory chapter presents the basic properties of the Heisenberg group, making the coverage self-contained. The setting is the first Heisenberg group, helping to keep the notation simple and allow the reader to focus on the core of the theory and techniques in the field. Further, detailed proofs make the work accessible to students at the graduate level.
電子資源:
http://dx.doi.org/10.1007/978-3-319-23790-9
p-Laplace equation in the Heisenberg group[electronic resource] :regularity of solutions /
Ricciotti, Diego.
p-Laplace equation in the Heisenberg group
regularity of solutions /[electronic resource] :by Diego Ricciotti. - Cham :Springer International Publishing :2015. - xiv, 87 p. :ill., digital ;24 cm. - SpringerBriefs in mathematics,2191-8198. - SpringerBriefs in mathematics..
1 Introduction -- 2 The Heisenberg Group -- 3 The p-Laplace Equation -- 4 C1 regularity for the non-degenerate equation -- 5 Lipschitz Regularity.
This works focuses on regularity theory for solutions to the p-Laplace equation in the Heisenberg group. In particular, it presents detailed proofs of smoothness for solutions to the non-degenerate equation and of Lipschitz regularity for solutions to the degenerate one. An introductory chapter presents the basic properties of the Heisenberg group, making the coverage self-contained. The setting is the first Heisenberg group, helping to keep the notation simple and allow the reader to focus on the core of the theory and techniques in the field. Further, detailed proofs make the work accessible to students at the graduate level.
ISBN: 9783319237909
Standard No.: 10.1007/978-3-319-23790-9doiSubjects--Topical Terms:
636378
Harmonic functions.
LC Class. No.: QA406
Dewey Class. No.: 515.53
p-Laplace equation in the Heisenberg group[electronic resource] :regularity of solutions /
LDR
:01791nam a2200325 a 4500
001
444663
003
DE-He213
005
20160512153056.0
006
m d
007
cr nn 008maaau
008
160715s2015 gw s 0 eng d
020
$a
9783319237909
$q
(electronic bk.)
020
$a
9783319237893
$q
(paper)
024
7
$a
10.1007/978-3-319-23790-9
$2
doi
035
$a
978-3-319-23790-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA406
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
082
0 4
$a
515.53
$2
23
090
$a
QA406
$b
.R493 2015
100
1
$a
Ricciotti, Diego.
$3
636377
245
1 0
$a
p-Laplace equation in the Heisenberg group
$h
[electronic resource] :
$b
regularity of solutions /
$c
by Diego Ricciotti.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xiv, 87 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8198
505
0
$a
1 Introduction -- 2 The Heisenberg Group -- 3 The p-Laplace Equation -- 4 C1 regularity for the non-degenerate equation -- 5 Lipschitz Regularity.
520
$a
This works focuses on regularity theory for solutions to the p-Laplace equation in the Heisenberg group. In particular, it presents detailed proofs of smoothness for solutions to the non-degenerate equation and of Lipschitz regularity for solutions to the degenerate one. An introductory chapter presents the basic properties of the Heisenberg group, making the coverage self-contained. The setting is the first Heisenberg group, helping to keep the notation simple and allow the reader to focus on the core of the theory and techniques in the field. Further, detailed proofs make the work accessible to students at the graduate level.
650
0
$a
Harmonic functions.
$3
636378
650
1 4
$a
Mathematics.
$3
172349
650
2 4
$a
Ordinary Differential Equations.
$3
465742
650
0
$a
Laplacian operator.
$3
495758
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematics.
$3
465744
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-23790-9
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-23790-9
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入