語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Design and fabrication of self-power...
~
Pan, C. T.
Design and fabrication of self-powered micro-harvesters[electronic resource] :rotating and vibrating micro-power systems /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
621.313
書名/作者:
Design and fabrication of self-powered micro-harvesters : rotating and vibrating micro-power systems // C. T. Pan ... [et al.].
作者:
Pan, C. T.
出版者:
Singapore : : IEEE Wiley,, 2014.
面頁冊數:
1 online resource (xv, 269 p.)
標題:
Microelectromechanical systems - Design and construction.
標題:
Electric generators - Design and construction.
標題:
Energy harvesting.
ISBN:
9781118487808 (electronic bk.)
ISBN:
111848780X (electronic bk.)
ISBN:
9781118487815 (electronic bk.)
ISBN:
1118487818 (electronic bk.)
內容註:
Machine generated contents note: 1.Introduction -- 1.1.Background -- 1.2.Energy Harvesters -- 1.2.1.Piezoelectric ZnO Energy Harvester -- 1.2.2.Vibrational Electromagnetic Generators -- 1.2.3.Rotary Electromagnetic Generators -- 1.2.4.NFES Piezoelectric PVDF Energy Harvester -- 1.3.Overview -- 2.Design and Fabrication of Flexible Piezoelectric Generators Based on ZnO Thin Films -- 2.1.Introduction -- 2.2.Characterization and Theoretical Analysis of Flexible ZnO-Based Piezoelectric Harvesters -- 2.2.1.Vibration Energy Conversion Model of Film-Based Flexible Piezoelectric Energy Harvester -- 2.2.2.Piezoelectricity and Polarity Test of Piezoelectric ZnO Thin Film -- 2.2.5.Optimal Thickness of PET Substrate -- 2.2.4.Model Solution of Cantilever Plate Equation -- 2.2.5.Vibration-Induced Electric Potential and Electric Power -- 2.2.6.Static Analysis to Calculate the Optimal Thickness of the PET Substrate -- 2.2.7.Model Analysis and Harmonic Analysis -- 2.2.8.Results of Model Analysis and Harmonic Analysis -- 2.3.The Fabrication of Flexible Piezoelectric ZnO Harvesters on PET Substrates -- 2.3.1.Bonding Process to Fabricate UV-Curable Resin Lump Structures on PET Substrates -- 2.3.2.Near-Field Electro-Spinning with Stereolithography Technique to Directly Write 3D UV-Curable Resin Patterns on PET Substrates -- 2.3.3.Sputtering of Al and ITO Conductive Thin Films on PET Substrates -- 2.3.4.Deposition of Piezoelectric ZnO Thin Films by Using RF Magnetron Sputtering -- 2.3.5.Testing a Single Energy Harvester under Resonant and Non-Resonant Conditions -- 2.3.6.Application of ZnO/PET-Based Generator to Flash Signal LED Module -- 2.3.7.Design and Performance of a Broad Bandwidth Energy Harvesting System -- 2.4.Fabrication and Performance of Flexible ZnO/SUS304-Based Piezoelectric Generators -- 2.4.1.Deposition of Piezoelectric ZnO Thin Films on Stainless Steel Substrates -- 2.4.2.Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.3.Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.4.Characterization of ZnO/SUS304-Based Flexible Piezoelectric Generators -- 2.4.5.Structural and Morphological Properties of Piezoelectric ZnO Thin Films on Stainless Steel Substrates -- 2.4.6.Analysis of Adhesion of ZnO Thin Films on Stainless Steel Substrates -- 2.4.7.Electrical Properties of Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.8.Characterization of Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator: Analysis and Modification of Back Surface of SUS304 -- 2.4.9.Electrical Properties of Double-Sided ZnO/SUS304-Based Piezoelectric Generator -- 2.5.Summary -- References -- 3.Design and Fabrication of Vibration-Induced Electromagnetic Microgenerators -- 3.1.Introduction -- 3.2.Comparisons between MCTG and SMTG -- 3.2.1.Magnetic Core-Type Generator (MCTG) -- 3.2.2.Sided Magnet-Type Generator (SMTG) -- 3.3.Analysis of Electromagnetic Vibration-Induced Microgenerators -- 3.3.1.Design of Electromagnetic Vibration-Induced Microgenerators -- 3.3.2.Analysis Mode of the Microvibration Structure -- 3.3.3.Analysis Mode of Magnetic Field -- 3.3.4.Evaluation of Various Parameters of Power Output -- 3.4.Analytical Results and Discussion -- 3.4.1.Analysis of Bending Stress within the Supporting Beam of the Spiral Microspring -- 3.4.2.Finite Element Models for Magnetic Density Distribution -- 3.4.3.Power Output Evaluation -- 3.5.Fabrication of Microcoil for Microgenerator -- 3.5.1.Microspring and Induction Coil -- 3.5.2.Microspring and Magnet -- 3.6.Tests and Experiments -- 3.6.1.Measurement System -- 3.6.2.Measurement Results and Discussion -- 3.6.3.Comparison between Measured Results and Analytical Values -- 3.7.Conclusions -- 3.7.1.Analysis of Microgenerators and Vibration Mode and Simulation of the Magnetic Field -- 3.7.2.Fabrication of LTCC Microsensor -- 3.7.3.Measurement and Analysis Results -- 3.8.Summary -- References -- 4.Design and Fabrication of Rotary Electromagnetic Microgenerator -- 4.1.Introduction -- 4.1.1.Piezoelectric, Thermoelectric, and Electrostatic Generators -- 4.1.2.Vibrational Electromagnetic Generators -- 4.1.3.Rotary Electromagnetic Generators -- 4.1.4.Generator Processes -- 4.1.5.Lithographie Galvanoformung Abformung Process -- 4.1.6.Winding Processes -- 4.1.7.LTCC -- 4.1.8.Printed Circuit Board Processes -- 4.1.9.Finite-Element Simulation and Analytical Solutions -- 4.2 Case 1 Winding Generator -- 4.2.1.Design -- 4.2.2.Analytical Formulation -- 4.2.3.Simulation -- 4.2.4.Fabrication Process -- 4.2.5.Results and Discussion (1) -- 4.2.6.Results and Discussion (2) -- 4.3 Case 2 LTCC Generator -- 4.3.1.Simulation -- 4.3.2.Analytical Theorem of Microgenerator Electromagnetism -- 4.3.3.Simplification -- 4.3.4.Analysis of Vector Magnetic Potential -- 4.3.5.Analytical Solutions for Power Generation -- 4.4.Fabrication -- 4.4.1.LTCC Process -- 4.4.2.Magnet Process -- 4.4.3.Measurement Set-up -- 4.5.Results and Discussion -- 4.5.1.Design -- 4.5.2.Analytical Solutions -- 4.5.3.Fabrication -- References -- 5.Design and Fabrication of Electrospun PVDF Piezo-Energy Harvesters -- 5.1.Introduction -- 5.2.Fundamentals of Electrospinning Technology -- 5.2.1.Introduction to Electrospinning -- 5.2.2.Alignment and Assembly of Nanofibers -- 5.3.Near-Field Electrospinning -- 5.3.1.Introduction and Background -- 5.3.2.Principles of Operation -- 5.3.3.Process and Experiment -- 5.3.4.Summary -- 5.4.Continuous NFES -- 5.4.1.Introduction and Background -- 5.4.2.Principles of Operation -- 5.4.3.Controllability and Continuity -- 5.4.4.Process Characterization -- 5.4.5.Summary -- 5.5.Direct-Write Piezoelectric Nanogenerator -- 5.5.1.Introduction and Background -- 5.5.2.Polyvinylidene Fluoride -- 5.5.3.Theoretical Studies for Realization of Electrospun PVDF Nanofibers -- 5.5.4.Electrospinning of PVDF Nanofibers -- 5.5.5.Detailed Discussion of Process Parameters -- 5.5.6.Experimental Realization of PVDF Nanogenerator -- 5.5.7.Summary -- 5.6.Materials, Structure, and Operation of Nanogenerator with Future Prospects -- 5.6.1.Material and Structural Characteristics -- 5.6.2.Operation of Nanogenerator -- 5.6.3.Summary and Future Prospects -- 5.7.Case Study: Large-Array Electrospun PVDF Nanogenerators on a Flexible Substrate -- 5.7.1.Introduction and Background -- 5.7.2.Working Principle -- 5.7.3.Device Fabrication -- 5.7.4.Experimental Results -- 5.7.5.Summary -- 5.8.Conclusion -- 5.8.1.Near-Field Electrospinning -- 5.8.2.Continuous Near-Field Electrospinning -- 5.8.3.Direct-Write Piezoelectric PVDF -- 5.9.Future Directions -- 5.9.1.NFES Integrated Nanofiber Sensors -- 5.9.2.NFES One-Dimensional Sub-Wavelength Waveguide -- 5.9.3.NFES Biological Applications -- 5.9.4.Direct-Write Piezoelectric PVDF Nanogenerators -- References.
電子資源:
http://onlinelibrary.wiley.com/book/10.1002/9781118487808
Design and fabrication of self-powered micro-harvesters[electronic resource] :rotating and vibrating micro-power systems /
Pan, C. T.
Design and fabrication of self-powered micro-harvesters
rotating and vibrating micro-power systems /[electronic resource] :C. T. Pan ... [et al.]. - Singapore :IEEE Wiley,2014. - 1 online resource (xv, 269 p.)
Machine generated contents note: 1.Introduction -- 1.1.Background -- 1.2.Energy Harvesters -- 1.2.1.Piezoelectric ZnO Energy Harvester -- 1.2.2.Vibrational Electromagnetic Generators -- 1.2.3.Rotary Electromagnetic Generators -- 1.2.4.NFES Piezoelectric PVDF Energy Harvester -- 1.3.Overview -- 2.Design and Fabrication of Flexible Piezoelectric Generators Based on ZnO Thin Films -- 2.1.Introduction -- 2.2.Characterization and Theoretical Analysis of Flexible ZnO-Based Piezoelectric Harvesters -- 2.2.1.Vibration Energy Conversion Model of Film-Based Flexible Piezoelectric Energy Harvester -- 2.2.2.Piezoelectricity and Polarity Test of Piezoelectric ZnO Thin Film -- 2.2.5.Optimal Thickness of PET Substrate -- 2.2.4.Model Solution of Cantilever Plate Equation -- 2.2.5.Vibration-Induced Electric Potential and Electric Power -- 2.2.6.Static Analysis to Calculate the Optimal Thickness of the PET Substrate -- 2.2.7.Model Analysis and Harmonic Analysis -- 2.2.8.Results of Model Analysis and Harmonic Analysis -- 2.3.The Fabrication of Flexible Piezoelectric ZnO Harvesters on PET Substrates -- 2.3.1.Bonding Process to Fabricate UV-Curable Resin Lump Structures on PET Substrates -- 2.3.2.Near-Field Electro-Spinning with Stereolithography Technique to Directly Write 3D UV-Curable Resin Patterns on PET Substrates -- 2.3.3.Sputtering of Al and ITO Conductive Thin Films on PET Substrates -- 2.3.4.Deposition of Piezoelectric ZnO Thin Films by Using RF Magnetron Sputtering -- 2.3.5.Testing a Single Energy Harvester under Resonant and Non-Resonant Conditions -- 2.3.6.Application of ZnO/PET-Based Generator to Flash Signal LED Module -- 2.3.7.Design and Performance of a Broad Bandwidth Energy Harvesting System -- 2.4.Fabrication and Performance of Flexible ZnO/SUS304-Based Piezoelectric Generators -- 2.4.1.Deposition of Piezoelectric ZnO Thin Films on Stainless Steel Substrates -- 2.4.2.Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.3.Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.4.Characterization of ZnO/SUS304-Based Flexible Piezoelectric Generators -- 2.4.5.Structural and Morphological Properties of Piezoelectric ZnO Thin Films on Stainless Steel Substrates -- 2.4.6.Analysis of Adhesion of ZnO Thin Films on Stainless Steel Substrates -- 2.4.7.Electrical Properties of Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.8.Characterization of Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator: Analysis and Modification of Back Surface of SUS304 -- 2.4.9.Electrical Properties of Double-Sided ZnO/SUS304-Based Piezoelectric Generator -- 2.5.Summary -- References -- 3.Design and Fabrication of Vibration-Induced Electromagnetic Microgenerators -- 3.1.Introduction -- 3.2.Comparisons between MCTG and SMTG -- 3.2.1.Magnetic Core-Type Generator (MCTG) -- 3.2.2.Sided Magnet-Type Generator (SMTG) -- 3.3.Analysis of Electromagnetic Vibration-Induced Microgenerators -- 3.3.1.Design of Electromagnetic Vibration-Induced Microgenerators -- 3.3.2.Analysis Mode of the Microvibration Structure -- 3.3.3.Analysis Mode of Magnetic Field -- 3.3.4.Evaluation of Various Parameters of Power Output -- 3.4.Analytical Results and Discussion -- 3.4.1.Analysis of Bending Stress within the Supporting Beam of the Spiral Microspring -- 3.4.2.Finite Element Models for Magnetic Density Distribution -- 3.4.3.Power Output Evaluation -- 3.5.Fabrication of Microcoil for Microgenerator -- 3.5.1.Microspring and Induction Coil -- 3.5.2.Microspring and Magnet -- 3.6.Tests and Experiments -- 3.6.1.Measurement System -- 3.6.2.Measurement Results and Discussion -- 3.6.3.Comparison between Measured Results and Analytical Values -- 3.7.Conclusions -- 3.7.1.Analysis of Microgenerators and Vibration Mode and Simulation of the Magnetic Field -- 3.7.2.Fabrication of LTCC Microsensor -- 3.7.3.Measurement and Analysis Results -- 3.8.Summary -- References -- 4.Design and Fabrication of Rotary Electromagnetic Microgenerator -- 4.1.Introduction -- 4.1.1.Piezoelectric, Thermoelectric, and Electrostatic Generators -- 4.1.2.Vibrational Electromagnetic Generators -- 4.1.3.Rotary Electromagnetic Generators -- 4.1.4.Generator Processes -- 4.1.5.Lithographie Galvanoformung Abformung Process -- 4.1.6.Winding Processes -- 4.1.7.LTCC -- 4.1.8.Printed Circuit Board Processes -- 4.1.9.Finite-Element Simulation and Analytical Solutions -- 4.2 Case 1 Winding Generator -- 4.2.1.Design -- 4.2.2.Analytical Formulation -- 4.2.3.Simulation -- 4.2.4.Fabrication Process -- 4.2.5.Results and Discussion (1) -- 4.2.6.Results and Discussion (2) -- 4.3 Case 2 LTCC Generator -- 4.3.1.Simulation -- 4.3.2.Analytical Theorem of Microgenerator Electromagnetism -- 4.3.3.Simplification -- 4.3.4.Analysis of Vector Magnetic Potential -- 4.3.5.Analytical Solutions for Power Generation -- 4.4.Fabrication -- 4.4.1.LTCC Process -- 4.4.2.Magnet Process -- 4.4.3.Measurement Set-up -- 4.5.Results and Discussion -- 4.5.1.Design -- 4.5.2.Analytical Solutions -- 4.5.3.Fabrication -- References -- 5.Design and Fabrication of Electrospun PVDF Piezo-Energy Harvesters -- 5.1.Introduction -- 5.2.Fundamentals of Electrospinning Technology -- 5.2.1.Introduction to Electrospinning -- 5.2.2.Alignment and Assembly of Nanofibers -- 5.3.Near-Field Electrospinning -- 5.3.1.Introduction and Background -- 5.3.2.Principles of Operation -- 5.3.3.Process and Experiment -- 5.3.4.Summary -- 5.4.Continuous NFES -- 5.4.1.Introduction and Background -- 5.4.2.Principles of Operation -- 5.4.3.Controllability and Continuity -- 5.4.4.Process Characterization -- 5.4.5.Summary -- 5.5.Direct-Write Piezoelectric Nanogenerator -- 5.5.1.Introduction and Background -- 5.5.2.Polyvinylidene Fluoride -- 5.5.3.Theoretical Studies for Realization of Electrospun PVDF Nanofibers -- 5.5.4.Electrospinning of PVDF Nanofibers -- 5.5.5.Detailed Discussion of Process Parameters -- 5.5.6.Experimental Realization of PVDF Nanogenerator -- 5.5.7.Summary -- 5.6.Materials, Structure, and Operation of Nanogenerator with Future Prospects -- 5.6.1.Material and Structural Characteristics -- 5.6.2.Operation of Nanogenerator -- 5.6.3.Summary and Future Prospects -- 5.7.Case Study: Large-Array Electrospun PVDF Nanogenerators on a Flexible Substrate -- 5.7.1.Introduction and Background -- 5.7.2.Working Principle -- 5.7.3.Device Fabrication -- 5.7.4.Experimental Results -- 5.7.5.Summary -- 5.8.Conclusion -- 5.8.1.Near-Field Electrospinning -- 5.8.2.Continuous Near-Field Electrospinning -- 5.8.3.Direct-Write Piezoelectric PVDF -- 5.9.Future Directions -- 5.9.1.NFES Integrated Nanofiber Sensors -- 5.9.2.NFES One-Dimensional Sub-Wavelength Waveguide -- 5.9.3.NFES Biological Applications -- 5.9.4.Direct-Write Piezoelectric PVDF Nanogenerators -- References.
ISBN: 9781118487808 (electronic bk.)Subjects--Topical Terms:
344152
Microelectromechanical systems
--Design and construction.
LC Class. No.: TK7875 / .P187 2014
Dewey Class. No.: 621.313
Design and fabrication of self-powered micro-harvesters[electronic resource] :rotating and vibrating micro-power systems /
LDR
:07812cam a2200289Ii 4500
001
437012
003
OCoLC
005
20141002052611.0
006
m o d
007
cr |||||||||||
008
160125s2014 si o 000 0 eng d
020
$a
9781118487808 (electronic bk.)
020
$a
111848780X (electronic bk.)
020
$a
9781118487815 (electronic bk.)
020
$a
1118487818 (electronic bk.)
020
$z
9781118487792 (paper)
020
$z
1118487796 (paper)
035
$a
(OCoLC)880421150
035
$a
ocn880421150
040
$a
N
$b
eng
$c
N
$d
CUS
$d
DG1
$d
OCLCO
$d
OHI
$d
YDXCP
$d
IEEEE
$d
OCLCF
$d
UPM
050
4
$a
TK7875
$b
.P187 2014
082
0 4
$a
621.313
$2
23
100
1
$a
Pan, C. T.
$3
622924
245
1 0
$a
Design and fabrication of self-powered micro-harvesters
$h
[electronic resource] :
$b
rotating and vibrating micro-power systems /
$c
C. T. Pan ... [et al.].
260
$a
Singapore :
$b
IEEE Wiley,
$c
2014.
300
$a
1 online resource (xv, 269 p.)
505
0
$a
Machine generated contents note: 1.Introduction -- 1.1.Background -- 1.2.Energy Harvesters -- 1.2.1.Piezoelectric ZnO Energy Harvester -- 1.2.2.Vibrational Electromagnetic Generators -- 1.2.3.Rotary Electromagnetic Generators -- 1.2.4.NFES Piezoelectric PVDF Energy Harvester -- 1.3.Overview -- 2.Design and Fabrication of Flexible Piezoelectric Generators Based on ZnO Thin Films -- 2.1.Introduction -- 2.2.Characterization and Theoretical Analysis of Flexible ZnO-Based Piezoelectric Harvesters -- 2.2.1.Vibration Energy Conversion Model of Film-Based Flexible Piezoelectric Energy Harvester -- 2.2.2.Piezoelectricity and Polarity Test of Piezoelectric ZnO Thin Film -- 2.2.5.Optimal Thickness of PET Substrate -- 2.2.4.Model Solution of Cantilever Plate Equation -- 2.2.5.Vibration-Induced Electric Potential and Electric Power -- 2.2.6.Static Analysis to Calculate the Optimal Thickness of the PET Substrate -- 2.2.7.Model Analysis and Harmonic Analysis -- 2.2.8.Results of Model Analysis and Harmonic Analysis -- 2.3.The Fabrication of Flexible Piezoelectric ZnO Harvesters on PET Substrates -- 2.3.1.Bonding Process to Fabricate UV-Curable Resin Lump Structures on PET Substrates -- 2.3.2.Near-Field Electro-Spinning with Stereolithography Technique to Directly Write 3D UV-Curable Resin Patterns on PET Substrates -- 2.3.3.Sputtering of Al and ITO Conductive Thin Films on PET Substrates -- 2.3.4.Deposition of Piezoelectric ZnO Thin Films by Using RF Magnetron Sputtering -- 2.3.5.Testing a Single Energy Harvester under Resonant and Non-Resonant Conditions -- 2.3.6.Application of ZnO/PET-Based Generator to Flash Signal LED Module -- 2.3.7.Design and Performance of a Broad Bandwidth Energy Harvesting System -- 2.4.Fabrication and Performance of Flexible ZnO/SUS304-Based Piezoelectric Generators -- 2.4.1.Deposition of Piezoelectric ZnO Thin Films on Stainless Steel Substrates -- 2.4.2.Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.3.Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.4.Characterization of ZnO/SUS304-Based Flexible Piezoelectric Generators -- 2.4.5.Structural and Morphological Properties of Piezoelectric ZnO Thin Films on Stainless Steel Substrates -- 2.4.6.Analysis of Adhesion of ZnO Thin Films on Stainless Steel Substrates -- 2.4.7.Electrical Properties of Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.8.Characterization of Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator: Analysis and Modification of Back Surface of SUS304 -- 2.4.9.Electrical Properties of Double-Sided ZnO/SUS304-Based Piezoelectric Generator -- 2.5.Summary -- References -- 3.Design and Fabrication of Vibration-Induced Electromagnetic Microgenerators -- 3.1.Introduction -- 3.2.Comparisons between MCTG and SMTG -- 3.2.1.Magnetic Core-Type Generator (MCTG) -- 3.2.2.Sided Magnet-Type Generator (SMTG) -- 3.3.Analysis of Electromagnetic Vibration-Induced Microgenerators -- 3.3.1.Design of Electromagnetic Vibration-Induced Microgenerators -- 3.3.2.Analysis Mode of the Microvibration Structure -- 3.3.3.Analysis Mode of Magnetic Field -- 3.3.4.Evaluation of Various Parameters of Power Output -- 3.4.Analytical Results and Discussion -- 3.4.1.Analysis of Bending Stress within the Supporting Beam of the Spiral Microspring -- 3.4.2.Finite Element Models for Magnetic Density Distribution -- 3.4.3.Power Output Evaluation -- 3.5.Fabrication of Microcoil for Microgenerator -- 3.5.1.Microspring and Induction Coil -- 3.5.2.Microspring and Magnet -- 3.6.Tests and Experiments -- 3.6.1.Measurement System -- 3.6.2.Measurement Results and Discussion -- 3.6.3.Comparison between Measured Results and Analytical Values -- 3.7.Conclusions -- 3.7.1.Analysis of Microgenerators and Vibration Mode and Simulation of the Magnetic Field -- 3.7.2.Fabrication of LTCC Microsensor -- 3.7.3.Measurement and Analysis Results -- 3.8.Summary -- References -- 4.Design and Fabrication of Rotary Electromagnetic Microgenerator -- 4.1.Introduction -- 4.1.1.Piezoelectric, Thermoelectric, and Electrostatic Generators -- 4.1.2.Vibrational Electromagnetic Generators -- 4.1.3.Rotary Electromagnetic Generators -- 4.1.4.Generator Processes -- 4.1.5.Lithographie Galvanoformung Abformung Process -- 4.1.6.Winding Processes -- 4.1.7.LTCC -- 4.1.8.Printed Circuit Board Processes -- 4.1.9.Finite-Element Simulation and Analytical Solutions -- 4.2 Case 1 Winding Generator -- 4.2.1.Design -- 4.2.2.Analytical Formulation -- 4.2.3.Simulation -- 4.2.4.Fabrication Process -- 4.2.5.Results and Discussion (1) -- 4.2.6.Results and Discussion (2) -- 4.3 Case 2 LTCC Generator -- 4.3.1.Simulation -- 4.3.2.Analytical Theorem of Microgenerator Electromagnetism -- 4.3.3.Simplification -- 4.3.4.Analysis of Vector Magnetic Potential -- 4.3.5.Analytical Solutions for Power Generation -- 4.4.Fabrication -- 4.4.1.LTCC Process -- 4.4.2.Magnet Process -- 4.4.3.Measurement Set-up -- 4.5.Results and Discussion -- 4.5.1.Design -- 4.5.2.Analytical Solutions -- 4.5.3.Fabrication -- References -- 5.Design and Fabrication of Electrospun PVDF Piezo-Energy Harvesters -- 5.1.Introduction -- 5.2.Fundamentals of Electrospinning Technology -- 5.2.1.Introduction to Electrospinning -- 5.2.2.Alignment and Assembly of Nanofibers -- 5.3.Near-Field Electrospinning -- 5.3.1.Introduction and Background -- 5.3.2.Principles of Operation -- 5.3.3.Process and Experiment -- 5.3.4.Summary -- 5.4.Continuous NFES -- 5.4.1.Introduction and Background -- 5.4.2.Principles of Operation -- 5.4.3.Controllability and Continuity -- 5.4.4.Process Characterization -- 5.4.5.Summary -- 5.5.Direct-Write Piezoelectric Nanogenerator -- 5.5.1.Introduction and Background -- 5.5.2.Polyvinylidene Fluoride -- 5.5.3.Theoretical Studies for Realization of Electrospun PVDF Nanofibers -- 5.5.4.Electrospinning of PVDF Nanofibers -- 5.5.5.Detailed Discussion of Process Parameters -- 5.5.6.Experimental Realization of PVDF Nanogenerator -- 5.5.7.Summary -- 5.6.Materials, Structure, and Operation of Nanogenerator with Future Prospects -- 5.6.1.Material and Structural Characteristics -- 5.6.2.Operation of Nanogenerator -- 5.6.3.Summary and Future Prospects -- 5.7.Case Study: Large-Array Electrospun PVDF Nanogenerators on a Flexible Substrate -- 5.7.1.Introduction and Background -- 5.7.2.Working Principle -- 5.7.3.Device Fabrication -- 5.7.4.Experimental Results -- 5.7.5.Summary -- 5.8.Conclusion -- 5.8.1.Near-Field Electrospinning -- 5.8.2.Continuous Near-Field Electrospinning -- 5.8.3.Direct-Write Piezoelectric PVDF -- 5.9.Future Directions -- 5.9.1.NFES Integrated Nanofiber Sensors -- 5.9.2.NFES One-Dimensional Sub-Wavelength Waveguide -- 5.9.3.NFES Biological Applications -- 5.9.4.Direct-Write Piezoelectric PVDF Nanogenerators -- References.
588
$a
Description based on print version record.
650
0
$a
Microelectromechanical systems
$x
Design and construction.
$3
344152
650
0
$a
Electric generators
$x
Design and construction.
$3
418598
650
0
$a
Energy harvesting.
$3
468338
856
4 0
$u
http://onlinelibrary.wiley.com/book/10.1002/9781118487808
筆 0 讀者評論
多媒體
多媒體檔案
http://onlinelibrary.wiley.com/book/10.1002/9781118487808
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入