語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Tensor categories and endomorphisms ...
~
Bischoff, Marcel.
Tensor categories and endomorphisms of Von Neumann algebras[electronic resource] :with applications to quantum field theory /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
515.63
書名/作者:
Tensor categories and endomorphisms of Von Neumann algebras : with applications to quantum field theory // by Marcel Bischoff ... [et al.].
其他作者:
Bischoff, Marcel.
出版者:
Cham : : Springer International Publishing :, 2015.
面頁冊數:
x, 94 p. : : ill., digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Calculus of tensors.
標題:
Von Neumann algebras.
標題:
Quantum field theory.
標題:
Physics.
標題:
Quantum Field Theories, String Theory.
標題:
Mathematical Physics.
標題:
Algebra.
ISBN:
9783319143019 (electronic bk.)
ISBN:
9783319143002 (paper)
內容註:
Introduction -- Homomorphisms of von Neumann algebras -- Endomorphisms of infinite factors -- Homomorphisms and subfactors -- Non-factorial extensions -- Frobenius algebras, Q-systems and modules -- C* Frobenius algebras -- Q-systems and extensions -- The canonical Q-system -- Modules of Q-systems -- Induced Q-systems and Morita equivalence -- Bimodules -- Tensor product of bimodules -- Q-system calculus -- Reduced Q-systems -- Central decomposition of Q-systems -- Irreducible decomposition of Q-systems -- Intermediate Q-systems -- Q-systems in braided tensor categories -- a-induction -- Mirror Q-systems -- Centre of Q-systems -- Braided product of Q-systems -- The full centre -- Modular tensor categories -- The braided product of two full centres -- Applications in QFT -- Basics of algebraic quantum field theory -- Hard boundaries -- Transparent boundaries -- Further directions -- Conclusions.
摘要、提要註:
C* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables. The present introductory text reviews the basic notions and their cross-relations in different contexts. The focus is on Q-systems that serve as complete invariants, both for subfactors and for extensions of quantum field theory models. It proceeds with various operations on Q-systems (several decompositions, the mirror Q-system, braided product, centre and full centre of Q-systems) some of which are defined only in the presence of a braiding. The last chapter gives a brief exposition of the relevance of the mathematical structures presented in the main body for applications in Quantum Field Theory (in particular two-dimensional Conformal Field Theory, also with boundaries or defects).
電子資源:
http://dx.doi.org/10.1007/978-3-319-14301-9
Tensor categories and endomorphisms of Von Neumann algebras[electronic resource] :with applications to quantum field theory /
Tensor categories and endomorphisms of Von Neumann algebras
with applications to quantum field theory /[electronic resource] :by Marcel Bischoff ... [et al.]. - Cham :Springer International Publishing :2015. - x, 94 p. :ill., digital ;24 cm. - SpringerBriefs in mathematical physics,v.32197-1757 ;. - SpringerBriefs in mathematical physics ;v.1..
Introduction -- Homomorphisms of von Neumann algebras -- Endomorphisms of infinite factors -- Homomorphisms and subfactors -- Non-factorial extensions -- Frobenius algebras, Q-systems and modules -- C* Frobenius algebras -- Q-systems and extensions -- The canonical Q-system -- Modules of Q-systems -- Induced Q-systems and Morita equivalence -- Bimodules -- Tensor product of bimodules -- Q-system calculus -- Reduced Q-systems -- Central decomposition of Q-systems -- Irreducible decomposition of Q-systems -- Intermediate Q-systems -- Q-systems in braided tensor categories -- a-induction -- Mirror Q-systems -- Centre of Q-systems -- Braided product of Q-systems -- The full centre -- Modular tensor categories -- The braided product of two full centres -- Applications in QFT -- Basics of algebraic quantum field theory -- Hard boundaries -- Transparent boundaries -- Further directions -- Conclusions.
C* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables. The present introductory text reviews the basic notions and their cross-relations in different contexts. The focus is on Q-systems that serve as complete invariants, both for subfactors and for extensions of quantum field theory models. It proceeds with various operations on Q-systems (several decompositions, the mirror Q-system, braided product, centre and full centre of Q-systems) some of which are defined only in the presence of a braiding. The last chapter gives a brief exposition of the relevance of the mathematical structures presented in the main body for applications in Quantum Field Theory (in particular two-dimensional Conformal Field Theory, also with boundaries or defects).
ISBN: 9783319143019 (electronic bk.)
Standard No.: 10.1007/978-3-319-14301-9doiSubjects--Topical Terms:
403530
Calculus of tensors.
LC Class. No.: QA433
Dewey Class. No.: 515.63
Tensor categories and endomorphisms of Von Neumann algebras[electronic resource] :with applications to quantum field theory /
LDR
:02906nam a2200325 a 4500
001
426489
003
DE-He213
005
20150903145740.0
006
m d
007
cr nn 008maaau
008
151119s2015 gw s 0 eng d
020
$a
9783319143019 (electronic bk.)
020
$a
9783319143002 (paper)
024
7
$a
10.1007/978-3-319-14301-9
$2
doi
035
$a
978-3-319-14301-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA433
072
7
$a
PHS
$2
bicssc
072
7
$a
SCI057000
$2
bisacsh
082
0 4
$a
515.63
$2
23
090
$a
QA433
$b
.T312 2015
245
0 0
$a
Tensor categories and endomorphisms of Von Neumann algebras
$h
[electronic resource] :
$b
with applications to quantum field theory /
$c
by Marcel Bischoff ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
x, 94 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematical physics,
$x
2197-1757 ;
$v
v.3
505
0
$a
Introduction -- Homomorphisms of von Neumann algebras -- Endomorphisms of infinite factors -- Homomorphisms and subfactors -- Non-factorial extensions -- Frobenius algebras, Q-systems and modules -- C* Frobenius algebras -- Q-systems and extensions -- The canonical Q-system -- Modules of Q-systems -- Induced Q-systems and Morita equivalence -- Bimodules -- Tensor product of bimodules -- Q-system calculus -- Reduced Q-systems -- Central decomposition of Q-systems -- Irreducible decomposition of Q-systems -- Intermediate Q-systems -- Q-systems in braided tensor categories -- a-induction -- Mirror Q-systems -- Centre of Q-systems -- Braided product of Q-systems -- The full centre -- Modular tensor categories -- The braided product of two full centres -- Applications in QFT -- Basics of algebraic quantum field theory -- Hard boundaries -- Transparent boundaries -- Further directions -- Conclusions.
520
$a
C* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables. The present introductory text reviews the basic notions and their cross-relations in different contexts. The focus is on Q-systems that serve as complete invariants, both for subfactors and for extensions of quantum field theory models. It proceeds with various operations on Q-systems (several decompositions, the mirror Q-system, braided product, centre and full centre of Q-systems) some of which are defined only in the presence of a braiding. The last chapter gives a brief exposition of the relevance of the mathematical structures presented in the main body for applications in Quantum Field Theory (in particular two-dimensional Conformal Field Theory, also with boundaries or defects).
650
0
$a
Calculus of tensors.
$3
403530
650
0
$a
Von Neumann algebras.
$3
606575
650
0
$a
Quantum field theory.
$3
382693
650
1 4
$a
Physics.
$3
171863
650
2 4
$a
Quantum Field Theories, String Theory.
$3
465991
650
2 4
$a
Mathematical Physics.
$3
465111
650
2 4
$a
Algebra.
$3
189734
700
1
$a
Bischoff, Marcel.
$3
606574
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematical physics ;
$v
v.1.
$3
591158
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-14301-9
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-14301-9
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入