語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Numerical methods for nonlinear part...
~
Bartels, Soren.
Numerical methods for nonlinear partial differential equations[electronic resource] /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
515.353
書名/作者:
Numerical methods for nonlinear partial differential equations/ by Soren Bartels.
作者:
Bartels, Soren.
出版者:
Cham : : Springer International Publishing :, 2015.
面頁冊數:
x, 393 p. : : ill., digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Differential equations, Partial - Numerical solutions.
標題:
Differential equations, Nonlinear.
標題:
Numerical analysis.
標題:
Mathematics.
標題:
Numerical Analysis.
標題:
Partial Differential Equations.
標題:
Algorithms.
標題:
Calculus of Variations and Optimal Control; Optimization.
ISBN:
9783319137971 (electronic bk.)
ISBN:
9783319137964 (paper)
內容註:
1. Introduction -- Part I: Analytical and Numerical Foundations -- 2. Analytical Background -- 3. FEM for Linear Problems -- 4. Concepts for Discretized Problems -- Part II: Approximation of Classical Formulations -- 5. The Obstacle Problem -- 6. The Allen-Cahn Equation -- 7. Harmonic Maps -- 8. Bending Problems -- Part III: Methods for Extended Formulations -- 9. Nonconvexity and Microstructure -- 10. Free Discontinuities -- 11. Elastoplasticity -- Auxiliary Routines -- Frequently Used Notation -- Index.
摘要、提要註:
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
電子資源:
http://dx.doi.org/10.1007/978-3-319-13797-1
Numerical methods for nonlinear partial differential equations[electronic resource] /
Bartels, Soren.
Numerical methods for nonlinear partial differential equations
[electronic resource] /by Soren Bartels. - Cham :Springer International Publishing :2015. - x, 393 p. :ill., digital ;24 cm. - Springer series in computational mathematics,v.470179-3632 ;. - Springer series in computational mathematics ;42..
1. Introduction -- Part I: Analytical and Numerical Foundations -- 2. Analytical Background -- 3. FEM for Linear Problems -- 4. Concepts for Discretized Problems -- Part II: Approximation of Classical Formulations -- 5. The Obstacle Problem -- 6. The Allen-Cahn Equation -- 7. Harmonic Maps -- 8. Bending Problems -- Part III: Methods for Extended Formulations -- 9. Nonconvexity and Microstructure -- 10. Free Discontinuities -- 11. Elastoplasticity -- Auxiliary Routines -- Frequently Used Notation -- Index.
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
ISBN: 9783319137971 (electronic bk.)
Standard No.: 10.1007/978-3-319-13797-1doiSubjects--Topical Terms:
444995
Differential equations, Partial
--Numerical solutions.
LC Class. No.: QA377
Dewey Class. No.: 515.353
Numerical methods for nonlinear partial differential equations[electronic resource] /
LDR
:02414nam a2200337 a 4500
001
426438
003
DE-He213
005
20150903133057.0
006
m d
007
cr nn 008maaau
008
151119s2015 gw s 0 eng d
020
$a
9783319137971 (electronic bk.)
020
$a
9783319137964 (paper)
024
7
$a
10.1007/978-3-319-13797-1
$2
doi
035
$a
978-3-319-13797-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA377
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT021000
$2
bisacsh
072
7
$a
MAT006000
$2
bisacsh
082
0 4
$a
515.353
$2
23
090
$a
QA377
$b
.B283 2015
100
1
$a
Bartels, Soren.
$3
606454
245
1 0
$a
Numerical methods for nonlinear partial differential equations
$h
[electronic resource] /
$c
by Soren Bartels.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
x, 393 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer series in computational mathematics,
$x
0179-3632 ;
$v
v.47
505
0
$a
1. Introduction -- Part I: Analytical and Numerical Foundations -- 2. Analytical Background -- 3. FEM for Linear Problems -- 4. Concepts for Discretized Problems -- Part II: Approximation of Classical Formulations -- 5. The Obstacle Problem -- 6. The Allen-Cahn Equation -- 7. Harmonic Maps -- 8. Bending Problems -- Part III: Methods for Extended Formulations -- 9. Nonconvexity and Microstructure -- 10. Free Discontinuities -- 11. Elastoplasticity -- Auxiliary Routines -- Frequently Used Notation -- Index.
520
$a
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
650
0
$a
Differential equations, Partial
$x
Numerical solutions.
$3
444995
650
0
$a
Differential equations, Nonlinear.
$3
405187
650
0
$a
Numerical analysis.
$3
182796
650
1 4
$a
Mathematics.
$3
172349
650
2 4
$a
Numerical Analysis.
$3
465756
650
2 4
$a
Partial Differential Equations.
$3
464931
650
2 4
$a
Algorithms.
$3
182797
650
2 4
$a
Calculus of Variations and Optimal Control; Optimization.
$3
464715
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
Springer series in computational mathematics ;
$v
42.
$3
468488
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-13797-1
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-13797-1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入