語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
High-dimensional and low-quality vis...
~
Deng, Yue.
High-dimensional and low-quality visual information processing[electronic resource] :from structured sensing and understanding /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
006.37
書名/作者:
High-dimensional and low-quality visual information processing : from structured sensing and understanding // by Yue Deng.
作者:
Deng, Yue.
出版者:
Berlin, Heidelberg : : Springer Berlin Heidelberg :, 2015.
面頁冊數:
xv, 99 p. : : ill., digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Computer vision.
標題:
Image processing.
標題:
Optical data processing.
標題:
Engineering.
標題:
Signal, Image and Speech Processing.
標題:
Image Processing and Computer Vision.
標題:
Data Structures, Cryptology and Information Theory.
標題:
Data Mining and Knowledge Discovery.
ISBN:
9783662445266 (electronic bk.)
ISBN:
9783662445259 (paper)
內容註:
Introduction -- Sparse Structure for Visual Signal Sensing -- Graph Structure for Visual Signal Sensing -- Discriminative Structure for Visual Signal Understanding -- Information Theoretic Structure for Visual Signal Understanding -- Conclusions.
摘要、提要註:
This thesis primarily focuses on how to carry out intelligent sensing and understand the high-dimensional and low-quality visual information. After exploring the inherent structures of the visual data, it proposes a number of computational models covering an extensive range of mathematical topics, including compressive sensing, graph theory, probabilistic learning and information theory. These computational models are also applied to address a number of real-world problems including biometric recognition, stereo signal reconstruction, natural scene parsing, and SAR image processing.
電子資源:
http://dx.doi.org/10.1007/978-3-662-44526-6
High-dimensional and low-quality visual information processing[electronic resource] :from structured sensing and understanding /
Deng, Yue.
High-dimensional and low-quality visual information processing
from structured sensing and understanding /[electronic resource] :by Yue Deng. - Berlin, Heidelberg :Springer Berlin Heidelberg :2015. - xv, 99 p. :ill., digital ;24 cm. - Springer theses,2190-5053. - Springer theses..
Introduction -- Sparse Structure for Visual Signal Sensing -- Graph Structure for Visual Signal Sensing -- Discriminative Structure for Visual Signal Understanding -- Information Theoretic Structure for Visual Signal Understanding -- Conclusions.
This thesis primarily focuses on how to carry out intelligent sensing and understand the high-dimensional and low-quality visual information. After exploring the inherent structures of the visual data, it proposes a number of computational models covering an extensive range of mathematical topics, including compressive sensing, graph theory, probabilistic learning and information theory. These computational models are also applied to address a number of real-world problems including biometric recognition, stereo signal reconstruction, natural scene parsing, and SAR image processing.
ISBN: 9783662445266 (electronic bk.)
Standard No.: 10.1007/978-3-662-44526-6doiSubjects--Topical Terms:
403529
Computer vision.
LC Class. No.: TA1634
Dewey Class. No.: 006.37
High-dimensional and low-quality visual information processing[electronic resource] :from structured sensing and understanding /
LDR
:01918nam a2200349 a 4500
001
424691
003
DE-He213
005
20150603161226.0
006
m d
007
cr nn 008maaau
008
151119s2015 gw s 0 eng d
020
$a
9783662445266 (electronic bk.)
020
$a
9783662445259 (paper)
024
7
$a
10.1007/978-3-662-44526-6
$2
doi
035
$a
978-3-662-44526-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA1634
072
7
$a
TTBM
$2
bicssc
072
7
$a
UYS
$2
bicssc
072
7
$a
TEC008000
$2
bisacsh
072
7
$a
COM073000
$2
bisacsh
082
0 4
$a
006.37
$2
23
090
$a
TA1634
$b
.D392 2015
100
1
$a
Deng, Yue.
$3
602757
245
1 0
$a
High-dimensional and low-quality visual information processing
$h
[electronic resource] :
$b
from structured sensing and understanding /
$c
by Yue Deng.
260
$a
Berlin, Heidelberg :
$b
Springer Berlin Heidelberg :
$b
Imprint: Springer,
$c
2015.
300
$a
xv, 99 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer theses,
$x
2190-5053
505
0
$a
Introduction -- Sparse Structure for Visual Signal Sensing -- Graph Structure for Visual Signal Sensing -- Discriminative Structure for Visual Signal Understanding -- Information Theoretic Structure for Visual Signal Understanding -- Conclusions.
520
$a
This thesis primarily focuses on how to carry out intelligent sensing and understand the high-dimensional and low-quality visual information. After exploring the inherent structures of the visual data, it proposes a number of computational models covering an extensive range of mathematical topics, including compressive sensing, graph theory, probabilistic learning and information theory. These computational models are also applied to address a number of real-world problems including biometric recognition, stereo signal reconstruction, natural scene parsing, and SAR image processing.
650
0
$a
Computer vision.
$3
403529
650
0
$a
Image processing.
$3
342096
650
0
$a
Optical data processing.
$3
443260
650
1 4
$a
Engineering.
$3
372756
650
2 4
$a
Signal, Image and Speech Processing.
$3
463860
650
2 4
$a
Image Processing and Computer Vision.
$3
463967
650
2 4
$a
Data Structures, Cryptology and Information Theory.
$3
466976
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
464541
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
Springer theses.
$3
463746
856
4 0
$u
http://dx.doi.org/10.1007/978-3-662-44526-6
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-662-44526-6
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入