語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Roads to infinity[electronic resourc...
~
Stillwell, John.
Roads to infinity[electronic resource] :the mathematics of truth and proof /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
511.3/22
書名/作者:
Roads to infinity : the mathematics of truth and proof // John Stillwell.
作者:
Stillwell, John.
出版者:
Natick, Mass. : : A K Peters,, ©2010.
面頁冊數:
1 online resource (xi, 203 p.) : : ill.
標題:
Set theory.
標題:
Infinite.
標題:
Logic, Symbolic and mathematical.
ISBN:
9781439865507 (electronic bk.)
ISBN:
1439865507 (electronic bk.)
書目註:
Includes bibliographical references and index.
內容註:
The diagonal argument : Counting and countability ; Does one infinite size fit all? ; Cantor's diagonal argument ; Transcendental numbers ; Other uncountability proofs ; Rates of growth ; The cardinality of the continuum ; Historical background -- Ordinals : Counting past infinity ; The countable ordinals ; The axiom of choice ; The continuum hypothesis ; Induction ; Cantor normal form ; Goodstein's Theorem ; Hercules and the Hydra ; Historical background -- Computability and proof : Formal systems ; Post's approach to incompleteness ; Gödel's first incompleteness theorem ; Gödel's second incompleteness theorem ; Formalization of computability ; The halting problem ; The entscheidungsproblem ; Historical background -- Logic : Propositional logic ; A classical system ; A cut-free system for propositional logic ; Happy endings ; Predicate logic ; Completeness, consistency, happy endings ; Historical background -- Arithmetic : How might we prove consistency? ; Formal arithmetic ; The systems PA and PA ; Embedding PA and PA; Cut elimination in PA ; The height of this great argument ; Roads to infinity ; Historical background -- Natural unprovable sentences : A generalized Goodstein Theorem ; Countable ordinals via natural numbers ; From generalized Goodstein to well-ordering ; Generalized and ordinary Goodstein ; Provably computable functions ; Complete disorder is impossible ; The hardest theorem in graph theory ; Historical background -- Axioms of infinity : Set theory without infinity ; Inaccessible cardinals ; The axiom of determinacy ; Largeness axioms for arithmetic ; Large cardinals and finite mathematics ; Historical background.
摘要、提要註:
Offers an introduction to modern ideas about infinity and their implications for mathematics. It unifies ideas from set theory and mathematical logic, and traces their effects on mainstream mathematical topics of today, such as number theory and combinatorics. From publisher description.
電子資源:
http://www.crcnetbase.com/doi/book/10.1201/b11162
Roads to infinity[electronic resource] :the mathematics of truth and proof /
Stillwell, John.
Roads to infinity
the mathematics of truth and proof /[electronic resource] :John Stillwell. - Natick, Mass. :A K Peters,©2010. - 1 online resource (xi, 203 p.) :ill.
Includes bibliographical references and index.
The diagonal argument : Counting and countability ; Does one infinite size fit all? ; Cantor's diagonal argument ; Transcendental numbers ; Other uncountability proofs ; Rates of growth ; The cardinality of the continuum ; Historical background -- Ordinals : Counting past infinity ; The countable ordinals ; The axiom of choice ; The continuum hypothesis ; Induction ; Cantor normal form ; Goodstein's Theorem ; Hercules and the Hydra ; Historical background -- Computability and proof : Formal systems ; Post's approach to incompleteness ; Gödel's first incompleteness theorem ; Gödel's second incompleteness theorem ; Formalization of computability ; The halting problem ; The entscheidungsproblem ; Historical background -- Logic : Propositional logic ; A classical system ; A cut-free system for propositional logic ; Happy endings ; Predicate logic ; Completeness, consistency, happy endings ; Historical background -- Arithmetic : How might we prove consistency? ; Formal arithmetic ; The systems PA and PA ; Embedding PA and PA; Cut elimination in PA ; The height of this great argument ; Roads to infinity ; Historical background -- Natural unprovable sentences : A generalized Goodstein Theorem ; Countable ordinals via natural numbers ; From generalized Goodstein to well-ordering ; Generalized and ordinary Goodstein ; Provably computable functions ; Complete disorder is impossible ; The hardest theorem in graph theory ; Historical background -- Axioms of infinity : Set theory without infinity ; Inaccessible cardinals ; The axiom of determinacy ; Largeness axioms for arithmetic ; Large cardinals and finite mathematics ; Historical background.
Offers an introduction to modern ideas about infinity and their implications for mathematics. It unifies ideas from set theory and mathematical logic, and traces their effects on mainstream mathematical topics of today, such as number theory and combinatorics. From publisher description.
ISBN: 9781439865507 (electronic bk.)Subjects--Topical Terms:
443094
Set theory.
LC Class. No.: QA248 / .S778 2010
Dewey Class. No.: 511.3/22
Roads to infinity[electronic resource] :the mathematics of truth and proof /
LDR
:02959cam a2200289Ia 4500
001
415804
003
OCoLC
005
20141031093229.0
006
m o d
007
cr |||||||||||
008
150203s2010 maua ob 001 0 eng d
020
$a
9781439865507 (electronic bk.)
020
$a
1439865507 (electronic bk.)
020
$z
9781568814667 (alk. paper)
020
$z
1568814666 (alk. paper)
035
$a
(OCoLC)752580854
$z
(OCoLC)763279006
$z
(OCoLC)767689030
035
$a
ocn752580854
040
$a
CUS
$b
eng
$e
pn
$c
CUS
$d
OCLCE
$d
OCLCQ
$d
OCLCF
$d
CRCPR
$d
OCLCQ
050
4
$a
QA248
$b
.S778 2010
082
0 4
$a
511.3/22
$2
22
100
1
$a
Stillwell, John.
$3
587121
245
1 0
$a
Roads to infinity
$h
[electronic resource] :
$b
the mathematics of truth and proof /
$c
John Stillwell.
260
$a
Natick, Mass. :
$b
A K Peters,
$c
©2010.
300
$a
1 online resource (xi, 203 p.) :
$b
ill.
504
$a
Includes bibliographical references and index.
505
0
$6
880-01
$a
The diagonal argument : Counting and countability ; Does one infinite size fit all? ; Cantor's diagonal argument ; Transcendental numbers ; Other uncountability proofs ; Rates of growth ; The cardinality of the continuum ; Historical background -- Ordinals : Counting past infinity ; The countable ordinals ; The axiom of choice ; The continuum hypothesis ; Induction ; Cantor normal form ; Goodstein's Theorem ; Hercules and the Hydra ; Historical background -- Computability and proof : Formal systems ; Post's approach to incompleteness ; Gödel's first incompleteness theorem ; Gödel's second incompleteness theorem ; Formalization of computability ; The halting problem ; The entscheidungsproblem ; Historical background -- Logic : Propositional logic ; A classical system ; A cut-free system for propositional logic ; Happy endings ; Predicate logic ; Completeness, consistency, happy endings ; Historical background -- Arithmetic : How might we prove consistency? ; Formal arithmetic ; The systems PA and PA ; Embedding PA and PA; Cut elimination in PA ; The height of this great argument ; Roads to infinity ; Historical background -- Natural unprovable sentences : A generalized Goodstein Theorem ; Countable ordinals via natural numbers ; From generalized Goodstein to well-ordering ; Generalized and ordinary Goodstein ; Provably computable functions ; Complete disorder is impossible ; The hardest theorem in graph theory ; Historical background -- Axioms of infinity : Set theory without infinity ; Inaccessible cardinals ; The axiom of determinacy ; Largeness axioms for arithmetic ; Large cardinals and finite mathematics ; Historical background.
520
$a
Offers an introduction to modern ideas about infinity and their implications for mathematics. It unifies ideas from set theory and mathematical logic, and traces their effects on mainstream mathematical topics of today, such as number theory and combinatorics. From publisher description.
588
0
$a
Print version record.
650
0
$a
Set theory.
$3
443094
650
0
$a
Infinite.
$3
195061
650
0
$a
Logic, Symbolic and mathematical.
$3
381130
856
4 0
$u
http://www.crcnetbase.com/doi/book/10.1201/b11162
筆 0 讀者評論
多媒體
多媒體檔案
http://www.crcnetbase.com/doi/book/10.1201/b11162
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入