語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Multivariate generalized linear mixe...
~
Berridge, Damon.
Multivariate generalized linear mixed models using R[electronic resource] /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
300.1519535
書名/作者:
Multivariate generalized linear mixed models using R/ Damon M. Berridge, Robert Crouchley.
作者:
Berridge, Damon.
其他作者:
Crouchley, Robert.
出版者:
Boca Raton, FL : : CRC Press,, ©2011.
面頁冊數:
1 online resource (xxiii, 280 p.) : : ill.
標題:
Social sciences - Research
標題:
Social sciences - Research
標題:
Social sciences - Research
標題:
Multivariate analysis.
ISBN:
9781439813270 (electronic bk.)
ISBN:
1439813272 (electronic bk.)
書目註:
Includes bibliographical references and indexes.
電子資源:
http://www.crcnetbase.com/doi/book/10.1201/b10850
Multivariate generalized linear mixed models using R[electronic resource] /
Berridge, Damon.
Multivariate generalized linear mixed models using R
[electronic resource] /Damon M. Berridge, Robert Crouchley. - Boca Raton, FL :CRC Press,©2011. - 1 online resource (xxiii, 280 p.) :ill.
Includes bibliographical references and indexes.
Introduction2.1.
ISBN: 9781439813270 (electronic bk.)Subjects--Topical Terms:
342020
Social sciences
--Research
LC Class. No.: HA31.35 / .B47 2011
Dewey Class. No.: 300.1519535
Multivariate generalized linear mixed models using R[electronic resource] /
LDR
:08569cam a2200349Ia 4500
001
415796
003
OCoLC
005
20141031092838.0
006
m o d
007
cr |||||||||||
008
150203s2011 flua ob 001 0 eng d
020
$a
9781439813270 (electronic bk.)
020
$a
1439813272 (electronic bk.)
020
$z
9781439813263 (hardcover : alk. paper)
020
$z
1439813264 (hardcover : alk. paper)
035
$a
(OCoLC)756675740
035
$a
ocn756675740
040
$a
CUS
$b
eng
$e
pn
$c
CUS
$d
YDXCP
$d
E7B
$d
N
$d
EBLCP
$d
OCLCQ
$d
WAU
$d
NLGGC
$d
CUS
$d
OCLCF
$d
OCLCQ
$d
OCLCO
$d
CRCPR
$d
OCLCQ
050
4
$a
HA31.35
$b
.B47 2011
082
0 4
$a
300.1519535
100
1
$a
Berridge, Damon.
$3
587110
245
1 0
$a
Multivariate generalized linear mixed models using R
$h
[electronic resource] /
$c
Damon M. Berridge, Robert Crouchley.
260
$a
Boca Raton, FL :
$b
CRC Press,
$c
©2011.
300
$a
1 online resource (xxiii, 280 p.) :
$b
ill.
504
$a
Includes bibliographical references and indexes.
505
0 0
$g
2.1.
$t
Introduction
$g
2.2.
$t
Continuous/interval scale data
$g
2.3.
$t
Simple and multiple linear regression models --
$g
2.4.
$t
Checking assumptions in linear regression models --
$g
2.5.
$t
Likelihood: multiple linear regression --
$g
2.6.
$t
Comparing model likelihoods --
$g
2.7.
$t
Application of a multiple linear regression model --
$g
2.8.
$t
Exercises on linear models --
$g
3.1.
$t
Binary data --
$g
3.1.1.
$t
Introduction --
$g
3.1.2.
$t
Logistic regression --
$g
3.1.3.
$t
Logit and probit transformations --
$g
3.1.4.
$t
General logistic regression --
$g
3.1.5.
$t
Likelihood --
$g
3.1.6.
$t
Example with binary data --
$g
3.2.
$t
Ordinal data --
$g
3.2.1.
$t
Introduction --
$g
3.2.2.
$t
The ordered logit model --
$g
3.2.3.
$t
Dichotomization of ordered categories --
$g
3.2.4.
$t
Likelihood --
$g
3.2.5.
$t
Example with ordered data --
$g
3.3.
$t
Count data --
$g
3.3.1.
$t
Introduction --
$g
3.3.2.
$t
Poisson regression models --
$g
3.3.3.
$t
Likelihood --
$g
3.3.4.
$t
Example with count data --
$g
3.4.
$t
Exercises --
$g
4.1.
$t
Introduction --
$g
4.2.
$t
The linear model.
505
0 0
$g
4.3.
$t
The binary response model --
$g
4.4.
$t
The Poisson model --
$g
4.5.
$t
Likelihood --
$g
5.1.
$t
Introduction --
$g
5.2.
$t
Linear mixed model --
$g
5.3.
$t
The intraclass correlation coefficient --
$g
5.4.
$t
Parameter estimation by maximum likelihood --
$g
5.5.
$t
Regression with level-two effects --
$g
5.6.
$t
Two-level random intercept models --
$g
5.7.
$t
General two-level models including random intercepts --
$g
5.8.
$t
Likelihood --
$g
5.9.
$t
Residuals --
$g
5.10.
$t
Checking assumptions in mixed models --
$g
5.11.
$t
Comparing model likelihoods --
$g
5.12.
$t
Application of a two-level linear model --
$g
5.13.
$t
Two-level growth models --
$g
5.13.1.
$t
A two-level repeated measures model --
$g
5.13.2.
$t
A linear growth model --
$g
5.13.3.
$t
A quadratic growth model --
$g
5.14.
$t
Likelihood --
$g
5.15.
$t
Example using linear growth models --
$g
5.16.
$t
Exercises using mixed models for continuous/interval scale data --
$g
6.1.
$t
Introduction --
$g
6.2.
$t
The two-level logistic model --
$g
6.3.
$t
General two-level logistic models --
$g
6.4.
$t
Intraclass correlation coefficient --
$g
6.5.
$t
Likelihood --
$g
6.6.
$t
Example using binary data --
$g
6.7.
$t
Exercises using mixed models for binary data.
505
0 0
$g
7.1.
$t
Introduction --
$g
7.2.
$t
The two-level ordered logit model --
$g
7.3.
$t
Likelihood --
$g
7.4.
$t
Example using mixed models for ordered data --
$g
7.5.
$t
Exercises using mixed models for ordinal data --
$g
8.1.
$t
Introduction --
$g
8.2.
$t
The two-level Poisson model --
$g
8.3.
$t
Likelihood --
$g
8.4.
$t
Example using mixed models for count data --
$g
8.5.
$t
Exercises using mixed models for count data --
$g
9.1.
$t
Introduction --
$g
9.2.
$t
The mixed linear model --
$g
9.3.
$t
The mixed binary response model --
$g
9.4.
$t
The mixed Poisson model --
$g
9.5.
$t
Likelihood --
$g
10.1.
$t
Introduction --
$g
10.2.
$t
Three-level random intercept models --
$g
10.3.
$t
Three-level generalized linear models --
$g
10.4.
$t
Linear models --
$g
10.5.
$t
Binary response models --
$g
10.6.
$t
Likelihood --
$g
10.7.
$t
Example using three-level generalized linear models --
$g
10.8.
$t
Exercises using three-level generalized linear mixed models --
$g
11.1.
$t
Introduction --
$g
11.2.
$t
Multivariate two-level generalized linear model --
$g
11.3.
$t
Bivariate Poisson model: example --
$g
11.4.
$t
Bivariate ordered response model: example --
$g
11.5.
$t
Bivariate linear-probit model: example --
$g
11.6.
$t
Multivariate two-level generalized linear model likelihood.
505
0 0
$g
11.7.
$t
Exercises using multivariate generalized linear mixed models --
$g
12.1.
$t
Introduction --
$g
12.1.1.
$t
Left censoring --
$g
12.1.2.
$t
Right censoring --
$g
12.1.3.
$t
Time-varying explanatory variables --
$g
12.1.4.
$t
Competing risks --
$g
12.2.
$t
Duration data in discrete time --
$g
12.2.1.
$t
Single-level models for duration data --
$g
12.2.2.
$t
Two-level models for duration data --
$g
12.2.3.
$t
Three-level models for duration data --
$g
12.3.
$t
Renewal data --
$g
12.3.1.
$t
Introduction --
$g
12.3.2.
$t
Example: renewal models --
$g
12.4.
$t
Competing risk data --
$g
12.4.1.
$t
Introduction --
$g
12.4.2.
$t
Likelihood --
$g
12.4.3.
$t
Example: competing risk data --
$g
12.5.
$t
Exercises using renewal and competing risks models --
$g
13.1.
$t
Introduction --
$g
13.2.
$t
Mover-stayer model --
$g
13.3.
$t
Likelihood incorporating the mover-stayer model --
$g
13.4.
$t
Example 1: stayers within count data --
$g
13.5.
$t
Example 2: stayers within binary data --
$g
13.6.
$t
Exercises: stayers --
$g
14.1.
$t
Introduction to key issues: heterogeneity, state dependence and non-stationarity --
$g
14.2.
$t
Example --
$g
14.3.
$t
Random effects models --
$g
14.4.
$t
Initial conditions problem --
$g
14.5.
$t
Initial treatment.
505
0 0
$g
14.6.
$t
Example: depression data --
$g
14.7.
$t
Classical conditional analysis --
$g
14.8.
$t
Classical conditional model: example --
$g
14.9.
$t
Conditioning on initial response but allowing random effect uol to be dependent on z3 --
$g
14.10.
$t
Wooldridge conditional model: example --
$g
14.11.
$t
Modelling the initial conditions --
$g
14.12.
$t
Same random effect in the initial response and subsequent response models with a common scale parameter --
$g
14.13.
$t
Joint analysis with a common random effect: example --
$g
14.14.
$t
Same random effect in models of the initial response and subsequent responses but with different scale parameters --
$g
14.15.
$t
Joint analysis with a common random effect (different scale parameters): example --
$g
14.16.
$t
Different random effects in models of the initial response and subsequent responses --
$g
14.17.
$t
Different random effects: example --
$g
14.18.
$t
Embedding the Wooldridge approach in joint models for the initial response and subsequent responses --
$g
14.19.
$t
Joint model incorporating the Wooldridge approach: example --
$g
14.20.
$t
Other link functions --
$g
14.21.
$t
Exercises using models incorporating initial conditions/state dependence in binary data.
505
0 0
$g
15.1.
$t
Introduction --
$g
15.2.
$t
Fixed effects treatment of the two-level linear model --
$g
15.3.
$t
Dummy variable specification of the fixed effects model --
$g
15.4.
$t
Empirical comparison of two-level fixed effects and random effects estimators --
$g
15.5.
$t
Implicit fixed effects estimator --
$g
15.6.
$t
Random effects models --
$g
15.7.
$t
Comparing two-level fixed effects and random effects models --
$g
15.8.
$t
Fixed effects treatment of the three-level linear model --
$g
15.9.
$t
Exercises comparing fixed effects and random effects --
$g
A.1.
$t
SabreR installation --
$g
A.2.
$t
SabreR commands --
$g
A.2.1.
$t
The arguments of the SabreR object --
$g
A.2.2.
$t
The anatomy of a SabreR command file --
$g
A.3.
$t
Quadrature --
$g
A.3.1.
$t
Standard Gaussian quadrature --
$g
A.3.2.
$t
Performance of Gaussian quadrature --
$g
A.3.3.
$t
Adaptive quadrature --
$g
A.4.
$t
Estimation --
$g
A.4.1.
$t
Maximizing the log likelihood of random effects models --
$g
A.5.
$t
Fixed effects linear models --
$g
A.6.
$t
Endogenous and exogenous variables --
$g
B.1.
$t
Getting started with R --
$g
B.1.1.
$t
Preliminaries --
$g
B.1.1.1.
$t
Working with R in interactive mode --
$g
B.1.1.2.
$t
Basic functions --
$g
B.1.1.3.
$t
Getting help.
505
0 0
$g
B.1.1.4.
$t
Stopping R --
$g
B.1.2.
$t
Creating and manipulating data --
$g
B.1.2.1.
$t
Vectors and lists --
$g
B.1.2.2.
$t
Vectors --
$g
B.1.2.3.
$t
Vector operations --
$g
B.1.2.4.
$t
Lists --
$g
B.1.2.5.
$t
Data frames --
$g
B.1.3.
$t
Session management --
$g
B.1.3.1.
$t
Managing objects --
$g
B.1.3.2.
$t
Attaching and detaching objects --
$g
B.1.3.3.
$t
Serialization --
$g
B.1.3.4.
$t
R scripts --
$g
B.1.3.5.
$t
Batch processing --
$g
B.1.4.
$t
R packages --
$g
B.1.4.1.
$t
Loading a package into R --
$g
B.1.4.2.
$t
Installing a package for use in R --
$g
B.1.4.3.
$t
R and Statistics --
$g
B.2.
$t
Data preparation for SabreR --
$g
B.2.1.
$t
Creation of dummy variables --
$g
B.2.2.
$t
Missing values --
$g
B.2.3.
$t
Creating lagged response covariate data.
588
0
$a
Print version record.
650
0
$a
Social sciences
$x
Research
$x
Mathematical models.
$3
342020
650
0
$a
Social sciences
$x
Research
$x
Statistical methods.
$3
384403
650
0
$a
Social sciences
$x
Research
$x
Data processing.
$3
336675
650
0
$a
Multivariate analysis.
$3
182818
700
1
$a
Crouchley, Robert.
$3
587111
856
4 0
$u
http://www.crcnetbase.com/doi/book/10.1201/b10850
筆 0 讀者評論
多媒體
多媒體檔案
http://www.crcnetbase.com/doi/book/10.1201/b10850
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入