語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The Cube-A Window to Convex and Disc...
~
Bollobas, B.
The Cube-A Window to Convex and Discrete Geometry.[electronic resource].
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
516.08
書名/作者:
The Cube-A Window to Convex and Discrete Geometry.
作者:
Zong, Chuanming.
其他作者:
Bollobas, B.
出版者:
Cambridge : : Cambridge University Press,, 2006.
面頁冊數:
186 p.
標題:
Convex geometry.
ISBN:
9780511543173# (electronic bk.)
ISBN:
9780521855358 (print)
內容註:
Cover; Half-Title; Title; Copyright; Contents; Preface; Basic notation; Introduction; Chapter 1 Cross sections; 1.1 Introduction; 1.2 Good’s conjecture; 1.3 Hensley’s conjecture; 1.4 Additional remarks; Chapter 2 Projections; 2.1 Introduction; 2.2 Lower bounds and upper bounds; 2.3 A symmetric formula; 2.4 Combinatorial shapes; Chapter 3 Inscribed simplices; 3.1 Introduction; 3.2 Binary matrices; 3.3 Upper bounds; 3.4 Some particular cases; Chapter 4 Triangulations; 4.1 An example; 4.2 Some special triangulations; 4.3 Smith’s lower bound; 4.4 Lower-dimensional cases; Chapter 5 0/1 polytopes
摘要、提要註:
This tract has two purposes: to show what is known about the n-dimensional unit cubes and to demonstrate how Analysis, Algebra, Combinatorics, Graph Theory, Hyperbolic Geometry, Number Theory, can be applied to the study of them.
電子資源:
Click here to view book
The Cube-A Window to Convex and Discrete Geometry.[electronic resource].
Zong, Chuanming.
The Cube-A Window to Convex and Discrete Geometry.
[electronic resource]. - Cambridge :Cambridge University Press,2006. - 186 p.
Cover; Half-Title; Title; Copyright; Contents; Preface; Basic notation; Introduction; Chapter 1 Cross sections; 1.1 Introduction; 1.2 Good’s conjecture; 1.3 Hensley’s conjecture; 1.4 Additional remarks; Chapter 2 Projections; 2.1 Introduction; 2.2 Lower bounds and upper bounds; 2.3 A symmetric formula; 2.4 Combinatorial shapes; Chapter 3 Inscribed simplices; 3.1 Introduction; 3.2 Binary matrices; 3.3 Upper bounds; 3.4 Some particular cases; Chapter 4 Triangulations; 4.1 An example; 4.2 Some special triangulations; 4.3 Smith’s lower bound; 4.4 Lower-dimensional cases; Chapter 5 0/1 polytopes
This tract has two purposes: to show what is known about the n-dimensional unit cubes and to demonstrate how Analysis, Algebra, Combinatorics, Graph Theory, Hyperbolic Geometry, Number Theory, can be applied to the study of them.
Electronic reproduction.
Available via World Wide Web.
Mode of access: World Wide Web.
ISBN: 9780511543173# (electronic bk.)Subjects--Topical Terms:
567098
Convex geometry.
Index Terms--Genre/Form:
336502
Electronic books.
LC Class. No.: QA639.5 .Z66 2006eb
Dewey Class. No.: 516.08
The Cube-A Window to Convex and Discrete Geometry.[electronic resource].
LDR
:02189nam a22002893u 4500
001
405521
003
AU-PeEL
005
20090601202840.0
006
m d
007
cr mn---------
008
140714t2006 ||| s |||||||eng|d
020
$a
9780511543173# (electronic bk.)
020
$a
9780521855358 (print)
035
$a
EBL244433
035
$a
EBL244433
040
$a
AU-PeEL
$c
AU-PeEL
$d
AU-PeEL
050
0 0
$a
QA639.5 .Z66 2006eb
082
0 0
$a
516.08
100
1
$a
Zong, Chuanming.
$3
567097
245
1 4
$a
The Cube-A Window to Convex and Discrete Geometry.
$h
[electronic resource].
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2006.
300
$a
186 p.
505
0
$a
Cover; Half-Title; Title; Copyright; Contents; Preface; Basic notation; Introduction; Chapter 1 Cross sections; 1.1 Introduction; 1.2 Good’s conjecture; 1.3 Hensley’s conjecture; 1.4 Additional remarks; Chapter 2 Projections; 2.1 Introduction; 2.2 Lower bounds and upper bounds; 2.3 A symmetric formula; 2.4 Combinatorial shapes; Chapter 3 Inscribed simplices; 3.1 Introduction; 3.2 Binary matrices; 3.3 Upper bounds; 3.4 Some particular cases; Chapter 4 Triangulations; 4.1 An example; 4.2 Some special triangulations; 4.3 Smith’s lower bound; 4.4 Lower-dimensional cases; Chapter 5 0/1 polytopes
505
8
$a
5.1 Introduction5.2 0/1 polytopes and coding theory; 5.3 Classification; 5.4 The number of facets; Chapter 6 Minkowski’s conjecture; 6.1 Minkowski’s conjecture; 6.2 An algebraic version; 6.3 Hajos’ proof; 6.4 Other versions; Chpater 7 Furtwangler’s conjecture; 7.1 Furtwangler’s conjecture; 7.2 A theorem of Furtwangler and Hajos; 7.3 Hajos ’counterexamples; 7.4 Robinson’s characterization; Chapter 8 Keller’s conjecture; 8.1 Keller’s conjec
520
$a
This tract has two purposes: to show what is known about the n-dimensional unit cubes and to demonstrate how Analysis, Algebra, Combinatorics, Graph Theory, Hyperbolic Geometry, Number Theory, can be applied to the study of them.
533
$a
Electronic reproduction.
$n
Available via World Wide Web.
538
$a
Mode of access: World Wide Web.
650
4
$a
Convex geometry.
$3
567098
655
7
$a
Electronic books.
$2
local
$3
336502
700
1
$a
Bollobas, B.
$3
380635
700
1
$a
Fulton, W.
$3
380636
700
1
$a
Katok, A.
$3
380637
700
1
$a
Kirwan, F.
$3
380638
700
1
$a
Sarnak, P.
$3
380639
700
1
$a
Simon, B.
$3
380660
710
2
$a
Ebooks Corporation.
$3
380544
776
1
$z
9780521855358
856
4 0
$z
Click here to view book
$u
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511543173#
筆 0 讀者評論
多媒體
多媒體檔案
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511543173#
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入