語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Hexavalent chromium reduction using ...
~
Ball, Jonathon Hugh.
Hexavalent chromium reduction using supported n-ZVI and metalloporphyrin matrices.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
書名/作者:
Hexavalent chromium reduction using supported n-ZVI and metalloporphyrin matrices.
作者:
Ball, Jonathon Hugh.
面頁冊數:
102 p.
附註:
Source: Masters Abstracts International, Volume: 51-06.
Contained By:
Masters Abstracts International51-06(E).
標題:
Environmental Sciences.
標題:
Chemistry, General.
標題:
Engineering, Environmental.
ISBN:
9781303136016
摘要、提要註:
Chromium (Cr) can exist in the environment in many valence states ranging from -2 to +6. Hexavalent chromium (Cr(VI) and trivalent chromium (Cr(III) are the most stable forms of Cr and therefore are the most common in the environment. Cr(VI) is very toxic and has been considered a hazardous material and danger to society for many years. One of the main locations of Cr(VI) contamination in the environment is in groundwater aquifers. A simulation of this system coupled with a reduction-precipitation remediation method was utilized. In this research, n-ZVI was used in a supported silica sol-gel matrix by itself and with additions of the reaction catalysts: cobalt-protoporphyrin complexes (Co-PPIX) and cobalt-uroporphyrin complexes (Co-Uro).
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1539064
Hexavalent chromium reduction using supported n-ZVI and metalloporphyrin matrices.
Ball, Jonathon Hugh.
Hexavalent chromium reduction using supported n-ZVI and metalloporphyrin matrices.
- 102 p.
Source: Masters Abstracts International, Volume: 51-06.
Thesis (M.S.)--Clemson University, 2013.
Chromium (Cr) can exist in the environment in many valence states ranging from -2 to +6. Hexavalent chromium (Cr(VI) and trivalent chromium (Cr(III) are the most stable forms of Cr and therefore are the most common in the environment. Cr(VI) is very toxic and has been considered a hazardous material and danger to society for many years. One of the main locations of Cr(VI) contamination in the environment is in groundwater aquifers. A simulation of this system coupled with a reduction-precipitation remediation method was utilized. In this research, n-ZVI was used in a supported silica sol-gel matrix by itself and with additions of the reaction catalysts: cobalt-protoporphyrin complexes (Co-PPIX) and cobalt-uroporphyrin complexes (Co-Uro).
ISBN: 9781303136016Subjects--Topical Terms:
423027
Environmental Sciences.
Hexavalent chromium reduction using supported n-ZVI and metalloporphyrin matrices.
LDR
:03715nam a2200301 4500
001
404496
005
20140528124253.5
008
140703s2013 ||||||||||||||||| ||eng d
020
$a
9781303136016
035
$a
(MiAaPQ)AAI1539064
035
$a
AAI1539064
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Ball, Jonathon Hugh.
$3
565572
245
1 0
$a
Hexavalent chromium reduction using supported n-ZVI and metalloporphyrin matrices.
300
$a
102 p.
500
$a
Source: Masters Abstracts International, Volume: 51-06.
500
$a
Advisers: Elizabeth R. Carraway; Mark A. Schlautman.
502
$a
Thesis (M.S.)--Clemson University, 2013.
520
$a
Chromium (Cr) can exist in the environment in many valence states ranging from -2 to +6. Hexavalent chromium (Cr(VI) and trivalent chromium (Cr(III) are the most stable forms of Cr and therefore are the most common in the environment. Cr(VI) is very toxic and has been considered a hazardous material and danger to society for many years. One of the main locations of Cr(VI) contamination in the environment is in groundwater aquifers. A simulation of this system coupled with a reduction-precipitation remediation method was utilized. In this research, n-ZVI was used in a supported silica sol-gel matrix by itself and with additions of the reaction catalysts: cobalt-protoporphyrin complexes (Co-PPIX) and cobalt-uroporphyrin complexes (Co-Uro).
520
$a
Experimental results demonstrated that Co-Uro and Co-PPIX additions to the supported n-ZVI system each increased the rate constants compared to the supported n-ZVI alone. The concentration data for the reaction kinetics was fitted as two pseudo-first order reactions, a kfast for the initial decline and a kslow once the initial steep decline was complete. The Co-PPIX increased the slow reaction rate constant by a factor of 2.4 from 0.0080+/-0.0013 min-1 to 0.0192+/-0.0027 min -1 when added to the supported n-ZVI at an n-ZVI:Co-PPIX ratio of 100:1. The addition of Co-Uro also increased the slow reaction rate constant, although not as much as the Co-PPIX addition at the 100:1 addition rate, as it was increased by a factor of 2.0 to 0.0161+/-0.0015 min-1. The Co-Uro and Co-PPIX additions were studied across different addition rates in the supported n-ZVI system. Addition ratios were studied as molar ratios of 1500:1, 750:1, 500:1, and 100:1 for n-ZVI:Catalyst concentrations inside each sol-gel. The addition rates of 1500:1 and 750:1 had negligible effects on the reaction rate constants of the reduction system, but the addition ratios of 400:1 and 100:1 had an increased effect. The Co-Uro additions in the 1500:1, 750:1, and 400:1 addition ratios produced increases in the ks rate constants by factors of 1.1, 1.3, and 1.5 to 0.0088+/-0.0008 min -1, 0.0103+/-0.0029 min-1, and 0.0123+/-0.0030 min-1. The effects for the addition rates of 1500:1 and 750:1 in the systems with Co-PPIX additions were negligible as the rate constants increased slightly or none at all to 0.0080+/-0.0015 min-1 and 0.0079+/-0.0009 min-1. The addition rate of 400:1 for the system with Co-PPIX additions did have a measurable effect as the rate constant increased by a factor of 1.4 to 0.0110+/-0.0027 min -1. Ultimately, through the course of this research, it was determined that the catalyst effect for Co-Uro is greater than that of Co-PPIX at smaller ratios such as 1500:1 and 750:1, but at higher ratios such as 100:1, the Co-PPIX acts as a stronger catalyst.
590
$a
School code: 0050.
650
4
$a
Environmental Sciences.
$3
423027
650
4
$a
Chemistry, General.
$3
423578
650
4
$a
Engineering, Environmental.
$3
422942
690
$a
0768
690
$a
0485
690
$a
0775
710
2
$a
Clemson University.
$b
Environmental Engineering and Science.
$3
565459
773
0
$t
Masters Abstracts International
$g
51-06(E).
790
$a
0050
791
$a
M.S.
792
$a
2013
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1539064
筆 0 讀者評論
多媒體
多媒體檔案
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1539064
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入