語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Computational methods for modelling ...
~
Howlett, P. G. (1944-)
Computational methods for modelling of nonlinear systems[electronic resource] /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
515.72480113
書名/作者:
Computational methods for modelling of nonlinear systems/ A. Torokhti, P. Howlett.
其他題名:
Computational methods for modeling of nonlinear systems
作者:
Torokhti, A.
其他作者:
Howlett, P. G.
出版者:
Amsterdam ; : Elsevier,, 2007.
面頁冊數:
xi, 397 p. : : ill. (some col.) ;; 24 cm.
叢書名:
Mathematics in science and engineering,
標題:
Nonlinear systems - Mathematical models.
標題:
Niet-lineaire systemen.
標題:
Optimaliseren.
ISBN:
9780444530448
ISBN:
0444530444
書目註:
Includes bibliographical references (p. 379-393) and index.
內容註:
Preface -- -- Contents -- -- 1 Overview -- -- I Methods of Operator Approximation in System Modelling -- -- 2 Nonlinear Operator Approximation with Preassigned Accuracy -- -- 2.1 Introduction -- -- 2.2 Generic formulation of the problem -- -- 2.3 Operator approximation in space C([0; 1]): -- -- 2.4 Operator approximation in Banach spaces by polynomial operators -- -- 2.5 Approximation on compact sets in topological vector spaces -- -- 2.6 Approximation on noncompact sets in Hilbert spaces -- -- 2.7 Special results for maps into Banach spaces -- -- 2.8 Concluding remarks -- -- 3 Interpolation of Nonlinear Operators 65 -- -- 3.1 Introduction -- -- 3.2 Lagrange interpolation in Banach spaces -- -- 3.3 Weak interpolation of nonlinear operators -- -- 3.4 Some related results -- -- 3.5 Concluding remarks -- -- 4 Realistic Operators and their Approximation -- -- 4.1 Introduction -- -- 4.2 Formalization of concepts related to description of real-world objects -- -- 4.3 Approximation of R�continuous operators -- -- 4.4 Concluding remarks -- -- 5 Methods of Best Approximation for Nonlinear Operators -- -- 5.1 Introduction -- -- 5.2 Best Approximation of nonlinear operators in Banach spaces: Deterministic case -- -- 5.3 Estimation of mean and covariance matrix for random vectors -- -- 5.4 Best Hadamard-quadratic approximation -- -- 5.5 Best polynomial approximation -- -- 5.6 Best causal approximation -- -- 5.7 Best hybrid approximations -- -- 5.8 Concluding remarks -- -- II Optimal Estimation of Random Vectors -- -- 6 Computational Methods for Optimal Filtering of Stochastic Signals -- -- 6.1 Introduction -- -- 6.2 Optimal linear Filtering in Finite dimensional vector spaces -- -- 6.3 Optimal linear Filtering in Hilbert spaces -- -- 6.4 Optimal causal linear Filtering with piecewise constant memory -- -- 6.5 Optimal causal polynomial Filtering with arbitrarily variable memory -- -- 6.6 Optimal nonlinear Filtering with no memory constraint -- -- 6.7 Concluding remarks -- -- 7 Computational Methods for Optimal Compression and -- Reconstruction of Random Data -- -- 7.1 Introduction -- -- 7.2 Standard Principal Component Analysis and Karhunen-Loeeve transform (PCA{KLT) -- -- 7.3 Rank-constrained matrix approximations -- -- 7.4 Generic PCA{KLT -- -- 7.5 Optimal hybrid transform based on Hadamard-quadratic approximation -- -- 7.6 Optimal transform formed by a combination of nonlinear operators -- -- 7.7 Optimal generalized hybrid transform -- -- 7.8 Concluding remarks -- -- Bibliography -- -- Index
.
摘要、提要註:
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression. - Best operator approximation, - Non-Lagrange interpolation, - Generic Karhunen-Loeve transform - Generalised low-rank matrix approximation - Optimal data compression - Optimal nonlinear filtering.
電子資源:
An electronic book accessible through the World Wide Web; click for information
電子資源:
An electronic book accessible through the World Wide Web; click for information
Computational methods for modelling of nonlinear systems[electronic resource] /
Torokhti, A.
Computational methods for modelling of nonlinear systems
[electronic resource] /Computational methods for modeling of nonlinear systemsA. Torokhti, P. Howlett. - 1st ed. - Amsterdam ;Elsevier,2007. - xi, 397 p. :ill. (some col.) ;24 cm. - Mathematics in science and engineering,v. 2120076-5392 ;.
Includes bibliographical references (p. 379-393) and index.
Preface -- -- Contents -- -- 1 Overview -- -- I Methods of Operator Approximation in System Modelling -- -- 2 Nonlinear Operator Approximation with Preassigned Accuracy -- -- 2.1 Introduction -- -- 2.2 Generic formulation of the problem -- -- 2.3 Operator approximation in space C([0; 1]): -- -- 2.4 Operator approximation in Banach spaces by polynomial operators -- -- 2.5 Approximation on compact sets in topological vector spaces -- -- 2.6 Approximation on noncompact sets in Hilbert spaces -- -- 2.7 Special results for maps into Banach spaces -- -- 2.8 Concluding remarks -- -- 3 Interpolation of Nonlinear Operators 65 -- -- 3.1 Introduction -- -- 3.2 Lagrange interpolation in Banach spaces -- -- 3.3 Weak interpolation of nonlinear operators -- -- 3.4 Some related results -- -- 3.5 Concluding remarks -- -- 4 Realistic Operators and their Approximation -- -- 4.1 Introduction -- -- 4.2 Formalization of concepts related to description of real-world objects -- -- 4.3 Approximation of R�continuous operators -- -- 4.4 Concluding remarks -- -- 5 Methods of Best Approximation for Nonlinear Operators -- -- 5.1 Introduction -- -- 5.2 Best Approximation of nonlinear operators in Banach spaces: Deterministic case -- -- 5.3 Estimation of mean and covariance matrix for random vectors -- -- 5.4 Best Hadamard-quadratic approximation -- -- 5.5 Best polynomial approximation -- -- 5.6 Best causal approximation -- -- 5.7 Best hybrid approximations -- -- 5.8 Concluding remarks -- -- II Optimal Estimation of Random Vectors -- -- 6 Computational Methods for Optimal Filtering of Stochastic Signals -- -- 6.1 Introduction -- -- 6.2 Optimal linear Filtering in Finite dimensional vector spaces -- -- 6.3 Optimal linear Filtering in Hilbert spaces -- -- 6.4 Optimal causal linear Filtering with piecewise constant memory -- -- 6.5 Optimal causal polynomial Filtering with arbitrarily variable memory -- -- 6.6 Optimal nonlinear Filtering with no memory constraint -- -- 6.7 Concluding remarks -- -- 7 Computational Methods for Optimal Compression and -- Reconstruction of Random Data -- -- 7.1 Introduction -- -- 7.2 Standard Principal Component Analysis and Karhunen-Loeeve transform (PCA{KLT) -- -- 7.3 Rank-constrained matrix approximations -- -- 7.4 Generic PCA{KLT -- -- 7.5 Optimal hybrid transform based on Hadamard-quadratic approximation -- -- 7.6 Optimal transform formed by a combination of nonlinear operators -- -- 7.7 Optimal generalized hybrid transform -- -- 7.8 Concluding remarks -- -- Bibliography -- -- Index<P>.
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression. - Best operator approximation, - Non-Lagrange interpolation, - Generic Karhunen-Loeve transform - Generalised low-rank matrix approximation - Optimal data compression - Optimal nonlinear filtering.
Electronic reproduction.
Amsterdam :
Elsevier Science & Technology,
2007.
Mode of access: World Wide Web.
ISBN: 9780444530448
Source: 136796:136930Elsevier Science & Technologyhttp://www.sciencedirect.comSubjects--Topical Terms:
404162
Nonlinear systems
--Mathematical models.Index Terms--Genre/Form:
336502
Electronic books.
LC Class. No.: QA427 / .T67 2007eb
Dewey Class. No.: 515.72480113
Computational methods for modelling of nonlinear systems[electronic resource] /
LDR
:05770cam 2200385Ia 4500
001
337727
003
OCoLC
005
20100729101520.0
006
m d
007
cr cn|||||||||
008
110620s2007 ne a ob 001 0 eng d
020
$a
9780444530448
020
$a
0444530444
029
1
$a
NZ1
$b
11778355
035
$a
(OCoLC)162131543
035
$a
ocn162131543
037
$a
136796:136930
$b
Elsevier Science & Technology
$n
http://www.sciencedirect.com
040
$a
OPELS
$c
OPELS
$d
BAKER
$d
OCLCG
049
$a
TEFA
050
1 4
$a
QA427
$b
.T67 2007eb
082
0 4
$a
515.72480113
$2
22
100
1
$a
Torokhti, A.
$q
(Anatoli)
$3
404160
245
1 0
$a
Computational methods for modelling of nonlinear systems
$h
[electronic resource] /
$c
A. Torokhti, P. Howlett.
246
3
$a
Computational methods for modeling of nonlinear systems
250
$a
1st ed.
260
$a
Amsterdam ;
$a
Boston :
$b
Elsevier,
$c
2007.
300
$a
xi, 397 p. :
$b
ill. (some col.) ;
$c
24 cm.
440
0
$a
Mathematics in science and engineering,
$x
0076-5392 ;
$v
v. 212
504
$a
Includes bibliographical references (p. 379-393) and index.
505
0
$a
Preface -- -- Contents -- -- 1 Overview -- -- I Methods of Operator Approximation in System Modelling -- -- 2 Nonlinear Operator Approximation with Preassigned Accuracy -- -- 2.1 Introduction -- -- 2.2 Generic formulation of the problem -- -- 2.3 Operator approximation in space C([0; 1]): -- -- 2.4 Operator approximation in Banach spaces by polynomial operators -- -- 2.5 Approximation on compact sets in topological vector spaces -- -- 2.6 Approximation on noncompact sets in Hilbert spaces -- -- 2.7 Special results for maps into Banach spaces -- -- 2.8 Concluding remarks -- -- 3 Interpolation of Nonlinear Operators 65 -- -- 3.1 Introduction -- -- 3.2 Lagrange interpolation in Banach spaces -- -- 3.3 Weak interpolation of nonlinear operators -- -- 3.4 Some related results -- -- 3.5 Concluding remarks -- -- 4 Realistic Operators and their Approximation -- -- 4.1 Introduction -- -- 4.2 Formalization of concepts related to description of real-world objects -- -- 4.3 Approximation of R�continuous operators -- -- 4.4 Concluding remarks -- -- 5 Methods of Best Approximation for Nonlinear Operators -- -- 5.1 Introduction -- -- 5.2 Best Approximation of nonlinear operators in Banach spaces: Deterministic case -- -- 5.3 Estimation of mean and covariance matrix for random vectors -- -- 5.4 Best Hadamard-quadratic approximation -- -- 5.5 Best polynomial approximation -- -- 5.6 Best causal approximation -- -- 5.7 Best hybrid approximations -- -- 5.8 Concluding remarks -- -- II Optimal Estimation of Random Vectors -- -- 6 Computational Methods for Optimal Filtering of Stochastic Signals -- -- 6.1 Introduction -- -- 6.2 Optimal linear Filtering in Finite dimensional vector spaces -- -- 6.3 Optimal linear Filtering in Hilbert spaces -- -- 6.4 Optimal causal linear Filtering with piecewise constant memory -- -- 6.5 Optimal causal polynomial Filtering with arbitrarily variable memory -- -- 6.6 Optimal nonlinear Filtering with no memory constraint -- -- 6.7 Concluding remarks -- -- 7 Computational Methods for Optimal Compression and -- Reconstruction of Random Data -- -- 7.1 Introduction -- -- 7.2 Standard Principal Component Analysis and Karhunen-Loeeve transform (PCA{KLT) -- -- 7.3 Rank-constrained matrix approximations -- -- 7.4 Generic PCA{KLT -- -- 7.5 Optimal hybrid transform based on Hadamard-quadratic approximation -- -- 7.6 Optimal transform formed by a combination of nonlinear operators -- -- 7.7 Optimal generalized hybrid transform -- -- 7.8 Concluding remarks -- -- Bibliography -- -- Index<P>.
520
$a
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression. - Best operator approximation, - Non-Lagrange interpolation, - Generic Karhunen-Loeve transform - Generalised low-rank matrix approximation - Optimal data compression - Optimal nonlinear filtering.
533
$a
Electronic reproduction.
$b
Amsterdam :
$c
Elsevier Science & Technology,
$d
2007.
$n
Mode of access: World Wide Web.
$n
System requirements: Web browser.
$n
Title from title screen (viewed on July 25, 2007).
$n
Access may be restricted to users at subscribing institutions.
650
0
$a
Nonlinear systems
$x
Mathematical models.
$3
404162
650
1 7
$a
Niet-lineaire systemen.
$2
gtt
$3
404163
650
1 7
$a
Optimaliseren.
$2
gtt
$3
404164
655
7
$a
Electronic books.
$2
local
$3
336502
700
1
$a
Howlett, P. G.
$q
(Philip G.),
$d
1944-
$3
404161
710
2
$a
ScienceDirect (Online service)
$3
365609
776
1
$c
Original
$z
9780444530448
$z
0444530444
$w
(OCoLC)123111879
856
4 0
$3
ScienceDirect
$u
http://www.sciencedirect.com/science/publication?issn=00765392&volume=212
$z
An electronic book accessible through the World Wide Web; click for information
856
4 0
$3
Referex
$u
http://www.engineeringvillage.com/controller/servlet/OpenURL?genre=book&isbn=9780444530448
$z
An electronic book accessible through the World Wide Web; click for information
938
$a
Baker & Taylor
$b
BKTY
$c
135.95
$d
135.95
$i
0444530444
$n
0007082259
$s
active
994
$a
C0
$b
TEF
筆 0 讀者評論
多媒體
多媒體檔案
http://www.sciencedirect.com/science/publication?issn=00765392&volume=212
http://www.engineeringvillage.com/controller/servlet/OpenURL?genre=book&isbn=9780444530448
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入