A computational framework for segmen...
Lee, Mi-Suen.

 

  • A computational framework for segmentation and grouping[electronic resource] /
  • 紀錄類型: 書目-語言資料,印刷品 : Monograph/item
    杜威分類號: 006.3/7
    書名/作者: A computational framework for segmentation and grouping/ G�erard Medioni, Mi-Suen Lee, Chi-Keung Tang.
    作者: Medioni, G�erard.
    其他作者: Lee, Mi-Suen.
    出版者: Amsterdam ; : Elsevier,, 2000.
    面頁冊數: xvi, 260 p. : : ill. (some col.) ;; 27 cm. + + 1 computer disk (3 1/2 in.)
    標題: Calculus of tensors.
    標題: Vision par ordinateur.
    標題: Calcul tensoriel.
    標題: Computer vision.
    ISBN: 9780444503534
    ISBN: 0444503536
    書目註: Includes bibliographical references and index.
    摘要、提要註: This book represents a summary of the research we have been conducting since the early 1990s, and describes a conceptual framework which addresses some current shortcomings, and proposes a unified approach for a broad class of problems. While the framework is defined, our research continues, and some of the elements presented here will no doubt evolve in the coming years.It is organized in eight chapters. In the Introduction chapter, we present the definition of the problems, and give an overview of the proposed approach and its implementation. In particular, we illustrate the limitations of the 2.5D sketch, and motivate the use of a representation in terms of layers instead. In chapter 2, we review some of the relevant research in the literature. The discussion focuses on general computational approaches for early vision, and individual methods are only cited as references. Chapter 3 is the fundamental chapter, as it presents the elements of our salient feature inference engine, and their interaction. It introduced tensors as a way to represent information, tensor fields as a way to encode both constraints and results, and tensor voting as the communication scheme. Chapter 4 describes the feature extraction steps, given the computations performed by the engine described earlier. In chapter 5, we apply the generic framework to the inference of regions, curves, and junctions in 2-D. The input may take the form of 2-D points, with or without orientation. We illustrate the approach on a number of examples, both basic and advanced. In chapter 6, we apply the framework to the inference of surfaces, curves and junctions in 3-D. Here, the input consists of a set of 3-D points, with or without as associated normal or tangent direction. We show a number of illustrative examples, and also point to some applications of the approach. In chapter 7, we use our framework to tackle 3 early vision problems, shape from shading, stereo matching, and optical flow computation. In chapter 8, we conclude this book with a few remarks, and discuss future research directions. We include 3 appendices, one on Tensor Calculus, one dealing with proofs and details of the Feature Extraction process, and one dealing with the companion software packages.
    電子資源: An electronic book accessible through the World Wide Web; click for information
    電子資源: An electronic book accessible through the World Wide Web; click for information
    電子資源: http://www.loc.gov/catdir/enhancements/fy0609/00023205-d.html
Export
取書館別
 
 
變更密碼
登入