語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Sparse image and signal processing[e...
~
Fadili, Jalal.
Sparse image and signal processing[electronic resource] :wavelets and related geometric multiscale analysis /
紀錄類型:
書目-電子資源 : Monograph/item
杜威分類號:
621.367
書名/作者:
Sparse image and signal processing : wavelets and related geometric multiscale analysis // Jean-Luc Starck, Fionn Murtagh, Jalal Fadili.
其他題名:
Sparse Image & Signal Processing
作者:
Starck, Jean-Luc.
其他作者:
Murtagh, Fionn.
出版者:
Cambridge : : Cambridge University Press,, 2015.
面頁冊數:
xix, 428 p. : : digital ;; 24 cm.
附註:
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
標題:
Transformations (Mathematics)
標題:
Signal processing.
標題:
Image processing.
標題:
Sparse matrices.
標題:
Wavelets (Mathematics)
ISBN:
9781316104514
ISBN:
9781107088061
內容註:
Introduction to the world of sparsity -- The wavelet transform -- Redundant wavelet transform -- Nonlinear multiscale transforms -- Multiscale geometric transforms -- Sparsity and noise removal -- Linear inverse problems -- Morphological diversity -- Sparse blind source separation -- Dictionary learning -- Three-dimensional sparse representations -- Multiscale geometric analysis on the sphere -- Compressed sensing -- This book's take home message.
摘要、提要註:
This thoroughly updated new edition presents state of the art sparse and multiscale image and signal processing. It covers linear multiscale geometric transforms, such as wavelet, ridgelet, or curvelet transforms, and non-linear multiscale transforms based on the median and mathematical morphology operators. Along with an up-to-the-minute description of required computation, it covers the latest results in inverse problem solving and regularization, sparse signal decomposition, blind source separation, in-painting, and compressed sensing. New chapters and sections cover multiscale geometric transforms for three-dimensional data (data cubes), data on the sphere (geo-located data), dictionary learning, and nonnegative matrix factorization. The authors wed theory and practice in examining applications in areas such as astronomy, including recent results from the European Space Agency's Herschel mission, biology, fusion physics, cold dark matter simulation, medical MRI, digital media, and forensics. MATLAB® and IDL code, available online at
www.SparseSignalRecipes.info
, accompany these methods and all applications.
電子資源:
https://doi.org/10.1017/CBO9781316104514
Sparse image and signal processing[electronic resource] :wavelets and related geometric multiscale analysis /
Starck, Jean-Luc.
Sparse image and signal processing
wavelets and related geometric multiscale analysis /[electronic resource] :Sparse Image & Signal ProcessingJean-Luc Starck, Fionn Murtagh, Jalal Fadili. - Second edition. - Cambridge :Cambridge University Press,2015. - xix, 428 p. :digital ;24 cm.
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
Introduction to the world of sparsity -- The wavelet transform -- Redundant wavelet transform -- Nonlinear multiscale transforms -- Multiscale geometric transforms -- Sparsity and noise removal -- Linear inverse problems -- Morphological diversity -- Sparse blind source separation -- Dictionary learning -- Three-dimensional sparse representations -- Multiscale geometric analysis on the sphere -- Compressed sensing -- This book's take home message.
This thoroughly updated new edition presents state of the art sparse and multiscale image and signal processing. It covers linear multiscale geometric transforms, such as wavelet, ridgelet, or curvelet transforms, and non-linear multiscale transforms based on the median and mathematical morphology operators. Along with an up-to-the-minute description of required computation, it covers the latest results in inverse problem solving and regularization, sparse signal decomposition, blind source separation, in-painting, and compressed sensing. New chapters and sections cover multiscale geometric transforms for three-dimensional data (data cubes), data on the sphere (geo-located data), dictionary learning, and nonnegative matrix factorization. The authors wed theory and practice in examining applications in areas such as astronomy, including recent results from the European Space Agency's Herschel mission, biology, fusion physics, cold dark matter simulation, medical MRI, digital media, and forensics. MATLAB® and IDL code, available online at www.SparseSignalRecipes.info, accompany these methods and all applications.
ISBN: 9781316104514Subjects--Topical Terms:
228448
Transformations (Mathematics)
LC Class. No.: QA601 / .S785 2015
Dewey Class. No.: 621.367
Sparse image and signal processing[electronic resource] :wavelets and related geometric multiscale analysis /
LDR
:02554nmm a2200289 a 4500
001
492059
003
UkCbUP
005
20160210124843.0
006
m d
007
cr nn 008maaau
008
210201s2015 enk o 1 0 eng d
020
$a
9781316104514
$q
(electronic bk.)
020
$a
9781107088061
$q
(paper)
035
$a
CR9781316104514
040
$a
UkCbUP
$b
eng
$c
UkCbUP
041
0
$a
eng
050
4
$a
QA601
$b
.S785 2015
082
0 4
$a
621.367
$2
23
090
$a
QA601
$b
.S795 2015
100
1
$a
Starck, Jean-Luc.
$3
712109
245
1 0
$a
Sparse image and signal processing
$h
[electronic resource] :
$b
wavelets and related geometric multiscale analysis /
$c
Jean-Luc Starck, Fionn Murtagh, Jalal Fadili.
246
3
$a
Sparse Image & Signal Processing
250
$a
Second edition.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2015.
300
$a
xix, 428 p. :
$b
digital ;
$c
24 cm.
500
$a
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
505
0
$a
Introduction to the world of sparsity -- The wavelet transform -- Redundant wavelet transform -- Nonlinear multiscale transforms -- Multiscale geometric transforms -- Sparsity and noise removal -- Linear inverse problems -- Morphological diversity -- Sparse blind source separation -- Dictionary learning -- Three-dimensional sparse representations -- Multiscale geometric analysis on the sphere -- Compressed sensing -- This book's take home message.
520
$a
This thoroughly updated new edition presents state of the art sparse and multiscale image and signal processing. It covers linear multiscale geometric transforms, such as wavelet, ridgelet, or curvelet transforms, and non-linear multiscale transforms based on the median and mathematical morphology operators. Along with an up-to-the-minute description of required computation, it covers the latest results in inverse problem solving and regularization, sparse signal decomposition, blind source separation, in-painting, and compressed sensing. New chapters and sections cover multiscale geometric transforms for three-dimensional data (data cubes), data on the sphere (geo-located data), dictionary learning, and nonnegative matrix factorization. The authors wed theory and practice in examining applications in areas such as astronomy, including recent results from the European Space Agency's Herschel mission, biology, fusion physics, cold dark matter simulation, medical MRI, digital media, and forensics. MATLAB® and IDL code, available online at www.SparseSignalRecipes.info, accompany these methods and all applications.
650
0
$a
Transformations (Mathematics)
$3
228448
650
0
$a
Signal processing.
$3
174043
650
0
$a
Image processing.
$3
342096
650
0
$a
Sparse matrices.
$3
470188
650
0
$a
Wavelets (Mathematics)
$3
393849
700
1
$a
Murtagh, Fionn.
$3
712110
700
1
$a
Fadili, Jalal.
$3
712111
856
4 0
$u
https://doi.org/10.1017/CBO9781316104514
筆 0 讀者評論
多媒體
多媒體檔案
https://doi.org/10.1017/CBO9781316104514
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入