語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Categorical homotopy theory[electron...
~
Riehl, Emily.
Categorical homotopy theory[electronic resource] /
紀錄類型:
書目-電子資源 : Monograph/item
杜威分類號:
514.24
書名/作者:
Categorical homotopy theory/ Emily Riehl.
作者:
Riehl, Emily.
出版者:
Cambridge : : Cambridge University Press,, 2014.
面頁冊數:
xviii, 352 p. : : ill., digital ;; 24 cm.
標題:
Homotopy theory.
標題:
Algebra, Homological.
ISBN:
9781107261457
ISBN:
9781107048454
摘要、提要註:
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
電子資源:
https://doi.org/10.1017/CBO9781107261457
Categorical homotopy theory[electronic resource] /
Riehl, Emily.
Categorical homotopy theory
[electronic resource] /Emily Riehl. - Cambridge :Cambridge University Press,2014. - xviii, 352 p. :ill., digital ;24 cm. - New mathematical monographs ;24. - New mathematical monographs ;3..
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
ISBN: 9781107261457Subjects--Topical Terms:
465831
Homotopy theory.
LC Class. No.: QA612.7 / .R45 2014
Dewey Class. No.: 514.24
Categorical homotopy theory[electronic resource] /
LDR
:01817nmm a2200253 a 4500
001
491951
003
UkCbUP
005
20151005020624.0
006
m d
007
cr nn 008maaau
008
210201s2014 enk o 1 0 eng d
020
$a
9781107261457
$q
(electronic bk.)
020
$a
9781107048454
$q
(paper)
035
$a
CR9781107261457
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
4
$a
QA612.7
$b
.R45 2014
082
0 4
$a
514.24
$2
23
090
$a
QA612.7
$b
.R555 2014
100
1
$a
Riehl, Emily.
$3
711881
245
1 0
$a
Categorical homotopy theory
$h
[electronic resource] /
$c
Emily Riehl.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2014.
300
$a
xviii, 352 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
New mathematical monographs ;
$v
24
520
$a
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
650
0
$a
Homotopy theory.
$3
465831
650
0
$a
Algebra, Homological.
$3
556734
830
0
$a
New mathematical monographs ;
$v
3.
$3
642977
856
4 0
$u
https://doi.org/10.1017/CBO9781107261457
筆 0 讀者評論
多媒體
多媒體檔案
https://doi.org/10.1017/CBO9781107261457
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入