語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
EEG signal analysis and classificati...
~
Li, Yan.
EEG signal analysis and classification[electronic resource] :techniques and applications /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
616.8047547
書名/作者:
EEG signal analysis and classification : techniques and applications // by Siuly Siuly, Yan Li, Yanchun Zhang.
作者:
Siuly, Siuly.
其他作者:
Li, Yan.
出版者:
Cham : : Springer International Publishing :, 2016.
面頁冊數:
xiii, 256 p. : : ill., digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Electroencephalography.
標題:
Engineering.
標題:
Signal, Image and Speech Processing.
標題:
Health Informatics.
標題:
Artificial Intelligence (incl. Robotics)
標題:
Biomedical Engineering.
標題:
Image Processing and Computer Vision.
標題:
Information Systems Applications (incl. Internet)
ISBN:
9783319476537
ISBN:
9783319476520
內容註:
Electroencephalogram (EEG) and its background -- Significance of EEG signals in medical and health research -- Objectives and structures of the book -- Random sampling in the detection of epileptic EEG signals -- A novel clustering technique for the detection of epileptic seizures -- A statistical framework for classifying epileptic seizure from multi-category EEG signals -- Injecting principal component analysis with the OA scheme in the epileptic EEG signal classification -- Cross-correlation aided logistic regression model for the identification of motor imagery EEG signals in BCI applications -- Modified CC-LR Algorithm for identification of MI based EEG signals -- Improving prospective performance in the MI recognition: LS-SVM with tuning hyper parameters -- Comparative study: Motor area EEG and All-channels EEG -- Optimum allocation aided Naive Bayes based learning process for the detection of MI tasks -- Summary discussions on the methods, future directions and conclusions.
摘要、提要註:
This book presents advanced methodologies in two areas related to electroencephalogram (EEG) signals: detection of epileptic seizures and identification of mental states in brain computer interface (BCI) systems. The proposed methods enable the extraction of this vital information from EEG signals in order to accurately detect abnormalities revealed by the EEG. New methods will relieve the time-consuming and error-prone practices that are currently in use. Common signal processing methodologies include wavelet transformation and Fourier transformation, but these methods are not capable of managing the size of EEG data. Addressing the issue, this book examines new EEG signal analysis approaches with a combination of statistical techniques (e.g. random sampling, optimum allocation) and machine learning methods. The developed methods provide better results than the existing methods. The book also offers applications of the developed methodologies that have been tested on several real-time benchmark databases. This book concludes with thoughts on the future of the field and anticipated research challenges. It gives new direction to the field of analysis and classification of EEG signals through these more efficient methodologies. Researchers and experts will benefit from its suggested improvements to the current computer-aided based diagnostic systems for the precise analysis and management of EEG signals.
電子資源:
http://dx.doi.org/10.1007/978-3-319-47653-7
EEG signal analysis and classification[electronic resource] :techniques and applications /
Siuly, Siuly.
EEG signal analysis and classification
techniques and applications /[electronic resource] :by Siuly Siuly, Yan Li, Yanchun Zhang. - Cham :Springer International Publishing :2016. - xiii, 256 p. :ill., digital ;24 cm. - Health information science,2366-0988. - Health information science..
Electroencephalogram (EEG) and its background -- Significance of EEG signals in medical and health research -- Objectives and structures of the book -- Random sampling in the detection of epileptic EEG signals -- A novel clustering technique for the detection of epileptic seizures -- A statistical framework for classifying epileptic seizure from multi-category EEG signals -- Injecting principal component analysis with the OA scheme in the epileptic EEG signal classification -- Cross-correlation aided logistic regression model for the identification of motor imagery EEG signals in BCI applications -- Modified CC-LR Algorithm for identification of MI based EEG signals -- Improving prospective performance in the MI recognition: LS-SVM with tuning hyper parameters -- Comparative study: Motor area EEG and All-channels EEG -- Optimum allocation aided Naive Bayes based learning process for the detection of MI tasks -- Summary discussions on the methods, future directions and conclusions.
This book presents advanced methodologies in two areas related to electroencephalogram (EEG) signals: detection of epileptic seizures and identification of mental states in brain computer interface (BCI) systems. The proposed methods enable the extraction of this vital information from EEG signals in order to accurately detect abnormalities revealed by the EEG. New methods will relieve the time-consuming and error-prone practices that are currently in use. Common signal processing methodologies include wavelet transformation and Fourier transformation, but these methods are not capable of managing the size of EEG data. Addressing the issue, this book examines new EEG signal analysis approaches with a combination of statistical techniques (e.g. random sampling, optimum allocation) and machine learning methods. The developed methods provide better results than the existing methods. The book also offers applications of the developed methodologies that have been tested on several real-time benchmark databases. This book concludes with thoughts on the future of the field and anticipated research challenges. It gives new direction to the field of analysis and classification of EEG signals through these more efficient methodologies. Researchers and experts will benefit from its suggested improvements to the current computer-aided based diagnostic systems for the precise analysis and management of EEG signals.
ISBN: 9783319476537
Standard No.: 10.1007/978-3-319-47653-7doiSubjects--Topical Terms:
393941
Electroencephalography.
LC Class. No.: RC386.6.E43
Dewey Class. No.: 616.8047547
EEG signal analysis and classification[electronic resource] :techniques and applications /
LDR
:03512nam a2200349 a 4500
001
477215
003
DE-He213
005
20170103123639.0
006
m d
007
cr nn 008maaau
008
181208s2016 gw s 0 eng d
020
$a
9783319476537
$q
(electronic bk.)
020
$a
9783319476520
$q
(paper)
024
7
$a
10.1007/978-3-319-47653-7
$2
doi
035
$a
978-3-319-47653-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
RC386.6.E43
072
7
$a
TTBM
$2
bicssc
072
7
$a
UYS
$2
bicssc
072
7
$a
TEC008000
$2
bisacsh
072
7
$a
COM073000
$2
bisacsh
082
0 4
$a
616.8047547
$2
23
090
$a
RC386.6.E43
$b
S623 2016
100
1
$a
Siuly, Siuly.
$3
688591
245
1 0
$a
EEG signal analysis and classification
$h
[electronic resource] :
$b
techniques and applications /
$c
by Siuly Siuly, Yan Li, Yanchun Zhang.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xiii, 256 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Health information science,
$x
2366-0988
505
0
$a
Electroencephalogram (EEG) and its background -- Significance of EEG signals in medical and health research -- Objectives and structures of the book -- Random sampling in the detection of epileptic EEG signals -- A novel clustering technique for the detection of epileptic seizures -- A statistical framework for classifying epileptic seizure from multi-category EEG signals -- Injecting principal component analysis with the OA scheme in the epileptic EEG signal classification -- Cross-correlation aided logistic regression model for the identification of motor imagery EEG signals in BCI applications -- Modified CC-LR Algorithm for identification of MI based EEG signals -- Improving prospective performance in the MI recognition: LS-SVM with tuning hyper parameters -- Comparative study: Motor area EEG and All-channels EEG -- Optimum allocation aided Naive Bayes based learning process for the detection of MI tasks -- Summary discussions on the methods, future directions and conclusions.
520
$a
This book presents advanced methodologies in two areas related to electroencephalogram (EEG) signals: detection of epileptic seizures and identification of mental states in brain computer interface (BCI) systems. The proposed methods enable the extraction of this vital information from EEG signals in order to accurately detect abnormalities revealed by the EEG. New methods will relieve the time-consuming and error-prone practices that are currently in use. Common signal processing methodologies include wavelet transformation and Fourier transformation, but these methods are not capable of managing the size of EEG data. Addressing the issue, this book examines new EEG signal analysis approaches with a combination of statistical techniques (e.g. random sampling, optimum allocation) and machine learning methods. The developed methods provide better results than the existing methods. The book also offers applications of the developed methodologies that have been tested on several real-time benchmark databases. This book concludes with thoughts on the future of the field and anticipated research challenges. It gives new direction to the field of analysis and classification of EEG signals through these more efficient methodologies. Researchers and experts will benefit from its suggested improvements to the current computer-aided based diagnostic systems for the precise analysis and management of EEG signals.
650
0
$a
Electroencephalography.
$3
393941
650
1 4
$a
Engineering.
$3
372756
650
2 4
$a
Signal, Image and Speech Processing.
$3
463860
650
2 4
$a
Health Informatics.
$3
465003
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
463642
650
2 4
$a
Biomedical Engineering.
$3
382389
650
2 4
$a
Image Processing and Computer Vision.
$3
463967
650
2 4
$a
Information Systems Applications (incl. Internet)
$3
463679
700
1
$a
Li, Yan.
$3
617769
700
1
$a
Zhang, Yanchun.
$3
688592
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
Health information science.
$3
633941
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-47653-7
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-47653-7
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入