語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Matrix and tensor factorization tech...
~
SpringerLink (Online service)
Matrix and tensor factorization techniques for recommender systems[electronic resource] /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
005.56
書名/作者:
Matrix and tensor factorization techniques for recommender systems/ by Panagiotis Symeonidis, Andreas Zioupos.
作者:
Symeonidis, Panagiotis.
其他作者:
Zioupos, Andreas.
出版者:
Cham : : Springer International Publishing :, 2016.
面頁冊數:
vi, 102 p. : : ill., digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Recommender systems (Information filtering)
標題:
Computer Science.
標題:
Information Storage and Retrieval.
標題:
Mathematical Applications in Computer Science.
標題:
Mathematics of Computing.
標題:
Artificial Intelligence (incl. Robotics)
ISBN:
9783319413570
ISBN:
9783319413563
內容註:
Part I Matrix Factorization Techniques -- 1. Introduction -- 2. Related Work on Matrix Factorization -- 3. Performing SVD on matrices and its Extensions -- 4. Experimental Evaluation on Matrix Decomposition Methods -- Part II Tensor Factorization Techniques -- 5. Related Work on Tensor Factorization -- 6. HOSVD on Tensors and its Extensions -- 7. Experimental Evaluation on Tensor Decomposition Methods -- 8 Conclusions and Future Work.
摘要、提要註:
This book presents the algorithms used to provide recommendations by exploiting matrix factorization and tensor decomposition techniques. It highlights well-known decomposition methods for recommender systems, such as Singular Value Decomposition (SVD), UV-decomposition, Non-negative Matrix Factorization (NMF), etc. and describes in detail the pros and cons of each method for matrices and tensors. This book provides a detailed theoretical mathematical background of matrix/tensor factorization techniques and a step-by-step analysis of each method on the basis of an integrated toy example that runs throughout all its chapters and helps the reader to understand the key differences among methods. It also contains two chapters, where different matrix and tensor methods are compared experimentally on real data sets, such as Epinions, GeoSocialRec, Last.fm, BibSonomy, etc. and provides further insights into the advantages and disadvantages of each method. The book offers a rich blend of theory and practice, making it suitable for students, researchers and practitioners interested in both recommenders and factorization methods. Lecturers can also use it for classes on data mining, recommender systems and dimensionality reduction methods.
電子資源:
http://dx.doi.org/10.1007/978-3-319-41357-0
Matrix and tensor factorization techniques for recommender systems[electronic resource] /
Symeonidis, Panagiotis.
Matrix and tensor factorization techniques for recommender systems
[electronic resource] /by Panagiotis Symeonidis, Andreas Zioupos. - Cham :Springer International Publishing :2016. - vi, 102 p. :ill., digital ;24 cm. - SpringerBriefs in computer science,2191-5768. - SpringerBriefs in computer science..
Part I Matrix Factorization Techniques -- 1. Introduction -- 2. Related Work on Matrix Factorization -- 3. Performing SVD on matrices and its Extensions -- 4. Experimental Evaluation on Matrix Decomposition Methods -- Part II Tensor Factorization Techniques -- 5. Related Work on Tensor Factorization -- 6. HOSVD on Tensors and its Extensions -- 7. Experimental Evaluation on Tensor Decomposition Methods -- 8 Conclusions and Future Work.
This book presents the algorithms used to provide recommendations by exploiting matrix factorization and tensor decomposition techniques. It highlights well-known decomposition methods for recommender systems, such as Singular Value Decomposition (SVD), UV-decomposition, Non-negative Matrix Factorization (NMF), etc. and describes in detail the pros and cons of each method for matrices and tensors. This book provides a detailed theoretical mathematical background of matrix/tensor factorization techniques and a step-by-step analysis of each method on the basis of an integrated toy example that runs throughout all its chapters and helps the reader to understand the key differences among methods. It also contains two chapters, where different matrix and tensor methods are compared experimentally on real data sets, such as Epinions, GeoSocialRec, Last.fm, BibSonomy, etc. and provides further insights into the advantages and disadvantages of each method. The book offers a rich blend of theory and practice, making it suitable for students, researchers and practitioners interested in both recommenders and factorization methods. Lecturers can also use it for classes on data mining, recommender systems and dimensionality reduction methods.
ISBN: 9783319413570
Standard No.: 10.1007/978-3-319-41357-0doiSubjects--Topical Terms:
467318
Recommender systems (Information filtering)
LC Class. No.: QA76.9.I58 / S96 2016
Dewey Class. No.: 005.56
Matrix and tensor factorization techniques for recommender systems[electronic resource] /
LDR
:02753nam a2200337 a 4500
001
477212
003
DE-He213
005
20170130113558.0
006
m d
007
cr nn 008maaau
008
181208s2016 gw s 0 eng d
020
$a
9783319413570
$q
(electronic bk.)
020
$a
9783319413563
$q
(paper)
024
7
$a
10.1007/978-3-319-41357-0
$2
doi
035
$a
978-3-319-41357-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.I58
$b
S96 2016
072
7
$a
UNH
$2
bicssc
072
7
$a
UND
$2
bicssc
072
7
$a
COM030000
$2
bisacsh
082
0 4
$a
005.56
$2
23
090
$a
QA76.9.I58
$b
S986 2016
100
1
$a
Symeonidis, Panagiotis.
$3
615339
245
1 0
$a
Matrix and tensor factorization techniques for recommender systems
$h
[electronic resource] /
$c
by Panagiotis Symeonidis, Andreas Zioupos.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
vi, 102 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5768
505
0
$a
Part I Matrix Factorization Techniques -- 1. Introduction -- 2. Related Work on Matrix Factorization -- 3. Performing SVD on matrices and its Extensions -- 4. Experimental Evaluation on Matrix Decomposition Methods -- Part II Tensor Factorization Techniques -- 5. Related Work on Tensor Factorization -- 6. HOSVD on Tensors and its Extensions -- 7. Experimental Evaluation on Tensor Decomposition Methods -- 8 Conclusions and Future Work.
520
$a
This book presents the algorithms used to provide recommendations by exploiting matrix factorization and tensor decomposition techniques. It highlights well-known decomposition methods for recommender systems, such as Singular Value Decomposition (SVD), UV-decomposition, Non-negative Matrix Factorization (NMF), etc. and describes in detail the pros and cons of each method for matrices and tensors. This book provides a detailed theoretical mathematical background of matrix/tensor factorization techniques and a step-by-step analysis of each method on the basis of an integrated toy example that runs throughout all its chapters and helps the reader to understand the key differences among methods. It also contains two chapters, where different matrix and tensor methods are compared experimentally on real data sets, such as Epinions, GeoSocialRec, Last.fm, BibSonomy, etc. and provides further insights into the advantages and disadvantages of each method. The book offers a rich blend of theory and practice, making it suitable for students, researchers and practitioners interested in both recommenders and factorization methods. Lecturers can also use it for classes on data mining, recommender systems and dimensionality reduction methods.
650
0
$a
Recommender systems (Information filtering)
$3
467318
650
1 4
$a
Computer Science.
$3
423143
650
2 4
$a
Information Storage and Retrieval.
$3
464540
650
2 4
$a
Mathematical Applications in Computer Science.
$3
467521
650
2 4
$a
Mathematics of Computing.
$3
465323
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
463642
700
1
$a
Zioupos, Andreas.
$3
688587
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in computer science.
$3
466946
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-41357-0
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-41357-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入