Nonlinear principal component analys...
Kuroda, Masahiro.

 

  • Nonlinear principal component analysis and its applications[electronic resource] /
  • 紀錄類型: 書目-語言資料,印刷品 : Monograph/item
    杜威分類號: 519.5
    書名/作者: Nonlinear principal component analysis and its applications/ by Yuichi Mori, Masahiro Kuroda, Naomichi Makino.
    作者: Mori, Yuichi.
    其他作者: Kuroda, Masahiro.
    出版者: Singapore : : Springer Singapore :, 2016.
    面頁冊數: viii, 80 p. : : ill., digital ;; 24 cm.
    Contained By: Springer eBooks
    標題: Principal components analysis.
    標題: Nonlinear theories.
    標題: Statistics.
    標題: Statistical Theory and Methods.
    標題: Statistics and Computing/Statistics Programs.
    標題: Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law.
    ISBN: 9789811001598
    ISBN: 9789811001574
    內容註: 1. Introduction -- 2. Nonlinear Principal Component Analysis -- 3. Application.
    摘要、提要註: This book expounds the principle and related applications of nonlinear principal component analysis (PCA), which is useful method to analyze mixed measurement levels data. In the part dealing with the principle, after a brief introduction of ordinary PCA, a PCA for categorical data (nominal and ordinal) is introduced as nonlinear PCA, in which an optimal scaling technique is used to quantify the categorical variables. The alternating least squares (ALS) is the main algorithm in the method. Multiple correspondence analysis (MCA), a special case of nonlinear PCA, is also introduced. All formulations in these methods are integrated in the same manner as matrix operations. Because any measurement levels data can be treated consistently as numerical data and ALS is a very powerful tool for estimations, the methods can be utilized in a variety of fields such as biometrics, econometrics, psychometrics, and sociology. In the applications part of the book, four applications are introduced: variable selection for mixed measurement levels data, sparse MCA, joint dimension reduction and clustering methods for categorical data, and acceleration of ALS computation. The variable selection methods in PCA that originally were developed for numerical data can be applied to any types of measurement levels by using nonlinear PCA. Sparseness and joint dimension reduction and clustering for nonlinear data, the results of recent studies, are extensions obtained by the same matrix operations in nonlinear PCA. Finally, an acceleration algorithm is proposed to reduce the problem of computational cost in the ALS iteration in nonlinear multivariate methods. This book thus presents the usefulness of nonlinear PCA which can be applied to different measurement levels data in diverse fields. As well, it covers the latest topics including the extension of the traditional statistical method, newly proposed nonlinear methods, and computational efficiency in the methods.
    電子資源: http://dx.doi.org/10.1007/978-981-10-0159-8
評論
Export
取書館別
 
 
變更密碼
登入