Born-Jordan quantization[electronic ...
Gosson, Maurice A. de.

 

  • Born-Jordan quantization[electronic resource] :theory and applications /
  • レコード種別: 言語・文字資料 (印刷物) : 単行資料
    [NT 15000414] null: 530.15
    タイトル / 著者: Born-Jordan quantization : theory and applications // by Maurice A. de Gosson.
    著者: Gosson, Maurice A. de.
    出版された: Cham : : Springer International Publishing :, 2016.
    記述: xiii, 226 p. : : ill., digital ;; 24 cm.
    含まれています: Springer eBooks
    主題: Mathematical physics.
    主題: Operator-valued functions.
    主題: Physics.
    主題: Quantum Physics.
    主題: Operator Theory.
    主題: Mathematical Applications in the Physical Sciences.
    主題: History and Philosophical Foundations of Physics.
    国際標準図書番号 (ISBN) : 9783319279022
    国際標準図書番号 (ISBN) : 9783319279008
    [NT 15000228] null: Born-Jordan Quantization: Physical Motivation: On the Quantization Problem -- Quantization of Monomials -- Basic Hamiltonian Mechanics -- Wave Mechanics and the Schrodinger Equation -- Mathematical Aspects of Born-Jordan Quantization: The Weyl Correspondence -- The Cohen Class -- Born-Jordan Quantization -- Shubin's Pseudo-Differential Calculus -- Born-Jordan Pseudo-Differential Operators -- Weak Values and the Reconstruction Problem -- Some Advanced Topics: Metaplectic Operators -- Symplectic Covariance Properties -- Symbol Classes and Function Spaces.
    [NT 15000229] null: This book presents a comprehensive mathematical study of the operators behind the Born-Jordan quantization scheme. The Schrodinger and Heisenberg pictures of quantum mechanics are equivalent only if the Born-Jordan scheme is used. Thus, Born-Jordan quantization provides the only physically consistent quantization scheme, as opposed to the Weyl quantization commonly used by physicists. In this book we develop Born-Jordan quantization from an operator-theoretical point of view, and analyze in depth the conceptual differences between the two schemes. We discuss various physically motivated approaches, in particular the Feynman-integral point of view. One important and intriguing feature of Born-Jordan quantization is that it is not one-to-one: there are infinitely many classical observables whose quantization is zero.
    電子資源: http://dx.doi.org/10.1007/978-3-319-27902-2
マルチメディア (複合媒体資料)
マルチメディアファイル
http://dx.doi.org/10.1007/978-3-319-27902-2
論評
Export
受取館
 
 
パスワードを変更する
ログイン