語系:
繁體中文
English
日文
簡体中文
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Feasibility model of solar energy pl...
~
Majumder, Mrinmoy.
Feasibility model of solar energy plants by ANN and MCDM techniques[electronic resource] /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
杜威分類號:
621.471
書名/作者:
Feasibility model of solar energy plants by ANN and MCDM techniques/ by Mrinmoy Majumder, Apu K. Saha.
作者:
Majumder, Mrinmoy.
其他作者:
Saha, Apu K.
出版者:
Singapore : : Springer Singapore :, 2016.
面頁冊數:
x, 49 p. : : ill. (some col.), digital ;; 24 cm.
Contained By:
Springer eBooks
標題:
Solar energy - Computer simulation.
標題:
Solar energy - Decision making.
標題:
Energy.
標題:
Renewable and Green Energy.
標題:
Computational Intelligence.
標題:
Energy Technology.
標題:
Environmental Economics.
標題:
Climate Change/Climate Change Impacts.
ISBN:
9789812873088
ISBN:
9789812873071
內容註:
Introduction -- Justification -- Solar Energy -- Solar Energy -- Importance -- Benefits of Solar energy -- MCDM -- Definitions -- Applications -- Artificial Neural Network -- Definition -- Development Procedure of Models -- Development of the Feasibility Model -- Application of MCDM -- Development of Feasibility Index -- Model Validation of the Model -- Sensitivity Analysis -- Case Studies -- Locations -- Why this location? -- Results and Discussion -- MCDM Results -- ANN Results -- Conclusion.
摘要、提要註:
This Brief highlights a novel model to find out the feasibility of any location to produce solar energy. The model utilizes the latest multi-criteria decision making techniques and artificial neural networks to predict the suitability of a location to maximize allocation of available energy for producing optimal amount of electricity which will satisfy the demand from the market. According to the results of the case studies further applications are encouraged.
電子資源:
http://dx.doi.org/10.1007/978-981-287-308-8
Feasibility model of solar energy plants by ANN and MCDM techniques[electronic resource] /
Majumder, Mrinmoy.
Feasibility model of solar energy plants by ANN and MCDM techniques
[electronic resource] /by Mrinmoy Majumder, Apu K. Saha. - Singapore :Springer Singapore :2016. - x, 49 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs in energy,2191-5520. - SpringerBriefs in energy..
Introduction -- Justification -- Solar Energy -- Solar Energy -- Importance -- Benefits of Solar energy -- MCDM -- Definitions -- Applications -- Artificial Neural Network -- Definition -- Development Procedure of Models -- Development of the Feasibility Model -- Application of MCDM -- Development of Feasibility Index -- Model Validation of the Model -- Sensitivity Analysis -- Case Studies -- Locations -- Why this location? -- Results and Discussion -- MCDM Results -- ANN Results -- Conclusion.
This Brief highlights a novel model to find out the feasibility of any location to produce solar energy. The model utilizes the latest multi-criteria decision making techniques and artificial neural networks to predict the suitability of a location to maximize allocation of available energy for producing optimal amount of electricity which will satisfy the demand from the market. According to the results of the case studies further applications are encouraged.
ISBN: 9789812873088
Standard No.: 10.1007/978-981-287-308-8doiSubjects--Topical Terms:
640714
Solar energy
--Computer simulation.
LC Class. No.: TJ810
Dewey Class. No.: 621.471
Feasibility model of solar energy plants by ANN and MCDM techniques[electronic resource] /
LDR
:01970nam a2200325 a 4500
001
447244
003
DE-He213
005
20161006135432.0
006
m d
007
cr nn 008maaau
008
161201s2016 si s 0 eng d
020
$a
9789812873088
$q
(electronic bk.)
020
$a
9789812873071
$q
(paper)
024
7
$a
10.1007/978-981-287-308-8
$2
doi
035
$a
978-981-287-308-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TJ810
072
7
$a
THX
$2
bicssc
072
7
$a
TEC031010
$2
bisacsh
082
0 4
$a
621.471
$2
23
090
$a
TJ810
$b
.M234 2016
100
1
$a
Majumder, Mrinmoy.
$3
639556
245
1 0
$a
Feasibility model of solar energy plants by ANN and MCDM techniques
$h
[electronic resource] /
$c
by Mrinmoy Majumder, Apu K. Saha.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2016.
300
$a
x, 49 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in energy,
$x
2191-5520
505
0
$a
Introduction -- Justification -- Solar Energy -- Solar Energy -- Importance -- Benefits of Solar energy -- MCDM -- Definitions -- Applications -- Artificial Neural Network -- Definition -- Development Procedure of Models -- Development of the Feasibility Model -- Application of MCDM -- Development of Feasibility Index -- Model Validation of the Model -- Sensitivity Analysis -- Case Studies -- Locations -- Why this location? -- Results and Discussion -- MCDM Results -- ANN Results -- Conclusion.
520
$a
This Brief highlights a novel model to find out the feasibility of any location to produce solar energy. The model utilizes the latest multi-criteria decision making techniques and artificial neural networks to predict the suitability of a location to maximize allocation of available energy for producing optimal amount of electricity which will satisfy the demand from the market. According to the results of the case studies further applications are encouraged.
650
0
$a
Solar energy
$x
Computer simulation.
$3
640714
650
0
$a
Solar energy
$x
Decision making.
$3
640715
650
1 4
$a
Energy.
$3
422946
650
2 4
$a
Renewable and Green Energy.
$3
463518
650
2 4
$a
Computational Intelligence.
$3
463962
650
2 4
$a
Energy Technology.
$3
463819
650
2 4
$a
Environmental Economics.
$3
463686
650
2 4
$a
Climate Change/Climate Change Impacts.
$3
588878
700
1
$a
Saha, Apu K.
$3
640713
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in energy.
$3
470278
856
4 0
$u
http://dx.doi.org/10.1007/978-981-287-308-8
950
$a
Energy (Springer-40367)
筆 0 讀者評論
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-981-287-308-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入