语系:
簡体中文
English
日文
繁體中文
说明
登入
回上页
切换:
标签
|
MARC模式
|
ISBD
Schwinger's quantum action principle...
~
Milton, Kimball A.
Schwinger's quantum action principle[electronic resource] :from Dirac's formulation through Feynman's path integrals, the Schwinger-Keldysh method, quantum field theory, to source theory /
纪录类型:
书目-语言数据,印刷品 : Monograph/item
[NT 15000414] null:
530.143
[NT 47271] Title/Author:
Schwinger's quantum action principle : from Dirac's formulation through Feynman's path integrals, the Schwinger-Keldysh method, quantum field theory, to source theory // by Kimball A. Milton.
作者:
Milton, Kimball A.
出版者:
Cham : : Springer International Publishing :, 2015.
面页册数:
viii, 116 p. : : ill. (some col.), digital ;; 24 cm.
Contained By:
Springer eBooks
标题:
Quantum field theory.
标题:
Physics.
标题:
Quantum Physics.
标题:
History and Philosophical Foundations of Physics.
标题:
Mathematical Applications in the Physical Sciences.
标题:
Mathematical Methods in Physics.
ISBN:
9783319201283 (electronic bk.)
ISBN:
9783319201276 (paper)
[NT 15000228] null:
Historical introduction -- Review of classical action principles -- Classical field theory - electrodynamics -- Quantum Action Principle -- Time-cycle or Schwinger-keldysh Formulation -- Relativistic Theory of Fields -- Nonrelativistic Source theory -- Concluding remarks.
[NT 15000229] null:
Starting from the earlier notions of stationary action principles, these tutorial notes shows how Schwinger's Quantum Action Principle descended from Dirac's formulation, which independently led Feynman to his path-integral formulation of quantum mechanics. Part I brings out in more detail the connection between the two formulations, and applications are discussed. Then, the Keldysh-Schwinger time-cycle method of extracting matrix elements is described. Part II will discuss the variational formulation of quantum electrodynamics and the development of source theory.
电子资源:
http://dx.doi.org/10.1007/978-3-319-20128-3
Schwinger's quantum action principle[electronic resource] :from Dirac's formulation through Feynman's path integrals, the Schwinger-Keldysh method, quantum field theory, to source theory /
Milton, Kimball A.
Schwinger's quantum action principle
from Dirac's formulation through Feynman's path integrals, the Schwinger-Keldysh method, quantum field theory, to source theory /[electronic resource] :by Kimball A. Milton. - Cham :Springer International Publishing :2015. - viii, 116 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs in physics,2191-5423. - SpringerBriefs in physics..
Historical introduction -- Review of classical action principles -- Classical field theory - electrodynamics -- Quantum Action Principle -- Time-cycle or Schwinger-keldysh Formulation -- Relativistic Theory of Fields -- Nonrelativistic Source theory -- Concluding remarks.
Starting from the earlier notions of stationary action principles, these tutorial notes shows how Schwinger's Quantum Action Principle descended from Dirac's formulation, which independently led Feynman to his path-integral formulation of quantum mechanics. Part I brings out in more detail the connection between the two formulations, and applications are discussed. Then, the Keldysh-Schwinger time-cycle method of extracting matrix elements is described. Part II will discuss the variational formulation of quantum electrodynamics and the development of source theory.
ISBN: 9783319201283 (electronic bk.)
Standard No.: 10.1007/978-3-319-20128-3doiSubjects--Topical Terms:
382693
Quantum field theory.
LC Class. No.: QC174.45
Dewey Class. No.: 530.143
Schwinger's quantum action principle[electronic resource] :from Dirac's formulation through Feynman's path integrals, the Schwinger-Keldysh method, quantum field theory, to source theory /
LDR
:01957nam a2200325 a 4500
001
439654
003
DE-He213
005
20160127105536.0
006
m d
007
cr nn 008maaau
008
160322s2015 gw s 0 eng d
020
$a
9783319201283 (electronic bk.)
020
$a
9783319201276 (paper)
024
7
$a
10.1007/978-3-319-20128-3
$2
doi
035
$a
978-3-319-20128-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC174.45
072
7
$a
PHQ
$2
bicssc
072
7
$a
SCI057000
$2
bisacsh
082
0 4
$a
530.143
$2
23
090
$a
QC174.45
$b
.M662 2015
100
1
$a
Milton, Kimball A.
$3
627812
245
1 0
$a
Schwinger's quantum action principle
$h
[electronic resource] :
$b
from Dirac's formulation through Feynman's path integrals, the Schwinger-Keldysh method, quantum field theory, to source theory /
$c
by Kimball A. Milton.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
viii, 116 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in physics,
$x
2191-5423
505
0
$a
Historical introduction -- Review of classical action principles -- Classical field theory - electrodynamics -- Quantum Action Principle -- Time-cycle or Schwinger-keldysh Formulation -- Relativistic Theory of Fields -- Nonrelativistic Source theory -- Concluding remarks.
520
$a
Starting from the earlier notions of stationary action principles, these tutorial notes shows how Schwinger's Quantum Action Principle descended from Dirac's formulation, which independently led Feynman to his path-integral formulation of quantum mechanics. Part I brings out in more detail the connection between the two formulations, and applications are discussed. Then, the Keldysh-Schwinger time-cycle method of extracting matrix elements is described. Part II will discuss the variational formulation of quantum electrodynamics and the development of source theory.
650
0
$a
Quantum field theory.
$3
382693
650
1 4
$a
Physics.
$3
171863
650
2 4
$a
Quantum Physics.
$3
464237
650
2 4
$a
History and Philosophical Foundations of Physics.
$3
464264
650
2 4
$a
Mathematical Applications in the Physical Sciences.
$3
464932
650
2 4
$a
Mathematical Methods in Physics.
$3
464098
710
2
$a
SpringerLink (Online service)
$3
463450
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in physics.
$3
464236
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-20128-3
950
$a
Physics and Astronomy (Springer-11651)
读者评论 0 笔
多媒体
多媒体档案
http://dx.doi.org/10.1007/978-3-319-20128-3
评论
新增评论
分享你的心得
Export
[NT 5501410] pickup library
处理中
...
变更密码
登入